コード例 #1
0
ファイル: forecast.py プロジェクト: franck-c/wrfxpy
    def __init__(self, args):
        """
        Initialize the job state from the arguments dictionary.

        :param args: the forecast job arguments
        """
        super(JobState, self).__init__(args)
        self.grib_source = self.resolve_grib_source(self.grib_source)
        self.start_utc = round_time_to_hour(
            self.start_utc,
            up=False,
            period_hours=self.grib_source.period_hours)
        self.end_utc = round_time_to_hour(
            self.end_utc, up=True, period_hours=self.grib_source.period_hours)
        self.fc_hrs = compute_fc_hours(self.start_utc, self.end_utc)
        if 'job_id' in args:
            logging.info('job_id given in the job description.')
            self.job_id = args['job_id']
        else:
            logging.warning('job_id not given, creating.')
            self.job_id = 'wfc-' + self.grid_code + '-' + utc_to_esmf(
                self.start_utc) + '-{0:02d}'.format(self.fc_hrs)
        self.emails = self.parse_emails(args)
        self.domains = args['domains']
        self.ignitions = args.get('ignitions', None)
        self.fmda = self.parse_fmda(args)
        self.postproc = args['postproc']
        self.wrfxpy_dir = args['sys_install_path']
        self.args = args
コード例 #2
0
ファイル: rtma_cycler.py プロジェクト: franck-c/wrfxpy
def postprocess_cycle(cycle, region_cfg, wksp_path):
    """
    Build rasters from the computed fuel moisture.

    :param cycle: the UTC cycle time
    :param region_cfg: the region configuration
    :param wksp_path: the workspace path
    :return: the postprocessing path
    """
    data_path = compute_model_path(cycle, region_cfg.code, wksp_path)
    year_month = '%04d%02d' % (cycle.year, cycle.month)
    cycle_dir = 'fmda-%s-%04d%02d%02d-%02d' % (
        region_cfg.code, cycle.year, cycle.month, cycle.day, cycle.hour)
    postproc_path = osp.join(wksp_path, year_month, cycle_dir)

    # open and read in the fuel moisture values
    d = netCDF4.Dataset(data_path)
    fmc_gc = d.variables['FMC_GC'][:, :, :]
    d.close()

    # read in the longitudes and latitudes
    geo_path = osp.join(wksp_path, '%s-geo.nc' % region_cfg.code)
    d = netCDF4.Dataset(geo_path)
    lats = d.variables['XLAT'][:, :]
    lons = d.variables['XLONG'][:, :]
    d.close()

    fm_wisdom = {
        'native_unit': '-',
        'colorbar': '-',
        'colormap': 'jet_r',
        'scale': [0.0, 0.4]
    }

    esmf_cycle = utc_to_esmf(cycle)
    mf = {"1": {esmf_cycle: {}}}
    manifest_name = 'fmda-%s-%04d%02d%02d-%02d.json' % (
        region_cfg.code, cycle.year, cycle.month, cycle.day, cycle.hour)
    ensure_dir(osp.join(postproc_path, manifest_name))

    for i, name in [(0, '1-hr'), (1, '10-hr'), (2, '100-hr')]:
        fm_wisdom['name'] = '%s fuel moisture' % name
        raster_png, coords, cb_png = scalar_field_to_raster(
            fmc_gc[:, :, i], lats, lons, fm_wisdom)
        raster_name = 'fmda-%s-raster.png' % name
        cb_name = 'fmda-%s-raster-cb.png' % name
        with open(osp.join(postproc_path, raster_name), 'w') as f:
            f.write(raster_png)
        with open(osp.join(postproc_path, cb_name), 'w') as f:
            f.write(cb_png)
        mf["1"][esmf_cycle][name] = {
            'raster': raster_name,
            'coords': coords,
            'colorbar': cb_name
        }
        logging.info('writing manifest file %s' %
                     osp.join(postproc_path, manifest_name))
        json.dump(mf, open(osp.join(postproc_path, manifest_name), 'w'))

    return postproc_path
コード例 #3
0
ファイル: rtma_cycler.py プロジェクト: openwfm/wrfxpy
def postprocess_cycle(cycle, region_cfg, wksp_path):
    """
    Build rasters from the computed fuel moisture.

    :param cycle: the UTC cycle time
    :param region_cfg: the region configuration
    :param wksp_path: the workspace path
    :return: the postprocessing path
    """
    data_path = compute_model_path(cycle, region_cfg.code, wksp_path)
    year_month = '%04d%02d' % (cycle.year, cycle.month)
    cycle_dir = 'fmda-%s-%04d%02d%02d-%02d' %  (region_cfg.code, cycle.year, cycle.month, cycle.day, cycle.hour)
    postproc_path = osp.join(wksp_path, year_month, cycle_dir)

    # open and read in the fuel moisture values
    d = netCDF4.Dataset(data_path)
    fmc_gc = d.variables['FMC_GC'][:,:,:]
    d.close()

    # read in the longitudes and latitudes
    geo_path = osp.join(wksp_path, '%s-geo.nc' % region_cfg.code)
    d = netCDF4.Dataset(geo_path)
    lats = d.variables['XLAT'][:,:]
    lons = d.variables['XLONG'][:,:]
    d.close()

    fm_wisdom = {
       'native_unit' : '-',
       'colorbar' : '-',
       'colormap' : 'jet_r',
       'scale' : [0.0, 0.4]
    }

    esmf_cycle = utc_to_esmf(cycle) 
    mf = { "1" : {esmf_cycle : {}}}
    manifest_name = 'fmda-%s-%04d%02d%02d-%02d.json' %  (region_cfg.code, cycle.year, cycle.month, cycle.day, cycle.hour)
    ensure_dir(osp.join(postproc_path, manifest_name))

    for i,name in [(0, '1-hr'), (1, '10-hr'), (2, '100-hr')]:
        fm_wisdom['name'] = '%s fuel moisture' % name
        raster_png, coords, cb_png = scalar_field_to_raster(fmc_gc[:,:,i], lats, lons, fm_wisdom)
        raster_name = 'fmda-%s-raster.png' % name
        cb_name = 'fmda-%s-raster-cb.png' % name
        with open(osp.join(postproc_path, raster_name), 'w') as f:
            f.write(raster_png)
        with open(osp.join(postproc_path, cb_name), 'w') as f:
            f.write(cb_png) 
        mf["1"][esmf_cycle][name] = { 'raster' : raster_name, 'coords' : coords, 'colorbar' : cb_name }
        logging.info('writing manifest file %s' % osp.join(postproc_path, manifest_name) )
        json.dump(mf, open(osp.join(postproc_path, manifest_name), 'w'))

    return postproc_path
コード例 #4
0
ファイル: forecast.py プロジェクト: islenv/wrfxpy
    def __init__(self, args):
        """
        Initialize the job state from the arguments dictionary.

        :param args: the forecast job arguments
        """
        super(JobState, self).__init__(args)
        self.fc_hrs = compute_fc_hours(self.start_utc, self.end_utc)
        self.grib_source = self.resolve_grib_source(self.grib_source)
        self.job_id = 'wfc-' + self.grid_code + '-' + utc_to_esmf(self.start_utc) + '-{0:02d}'.format(self.fc_hrs)
        self.emails = self.parse_emails(args)
        self.domains = args['domains']
        self.ignitions = args.get('ignitions', None)
        self.fmda = self.parse_fmda(args)
        self.postproc = args['postproc']
        self.wrfxpy_dir = args['sys_install_path']
コード例 #5
0
    def __init__(self, args):
        """
        Initialize the job state from the arguments dictionary.

        :param args: the forecast job arguments
        """
        super(JobState, self).__init__(args)
        self.fc_hrs = compute_fc_hours(self.start_utc, self.end_utc)
        self.grib_source = self.resolve_grib_source(self.grib_source)
        self.job_id = 'wfc-' + self.grid_code + '-' + utc_to_esmf(
            self.start_utc) + '-{0:02d}'.format(self.fc_hrs)
        self.emails = self.parse_emails(args)
        self.domains = args['domains']
        self.ignitions = args.get('ignitions', None)
        self.fmda = self.parse_fmda(args)
        self.postproc = args['postproc']
        self.wrfxpy_dir = args['sys_install_path']
コード例 #6
0
ファイル: forecast.py プロジェクト: auteuov/wrfxpy
    def __init__(self, args):
        """
        Initialize the job state from the arguments dictionary.

        :param args: the forecast job arguments
        """
        super(JobState, self).__init__(args)
        #self.grib_source = [self.grib_source] if isinstance(self.grib_source, basestring) else self.grib_source
        #self.grib_source = [self.resolve_grib_source(g, args) for g in self.grib_source]
        self.grib_source = self.resolve_grib_source(self.grib_source, args)
        logging.info('Simulation requested from %s to %s' %
                     (str(self.start_utc), str(self.end_utc)))
        self.start_utc = round_time_to_hour(
            self.start_utc,
            up=False,
            period_hours=self.grib_source[0].period_hours)
        self.end_utc = round_time_to_hour(
            self.end_utc,
            up=True,
            period_hours=self.grib_source[0].period_hours)
        self.cycle_start_utc = round_time_to_hour(
            self.get('cycle_start_utc', None),
            period_hours=self.grib_source[0].cycle_hours)
        logging.info('Simulation times rounded  %s to %s' %
                     (str(self.start_utc), str(self.end_utc)))
        #self.start_utc = round_time_to_hour(self.start_utc, up=False, period_hours=self.grib_source.period_hours);
        #self.end_utc = round_time_to_hour(self.end_utc, up=True, period_hours=self.grib_source.period_hours);
        self.fc_hrs = timedelta_hours(self.end_utc - self.start_utc)
        if 'job_id' in args:
            logging.info('job_id %s given in the job description' %
                         args['job_id'])
            self.job_id = args['job_id']
        else:
            logging.warning('job_id not given, creating.')
            self.job_id = 'wfc-' + self.grid_code + '-' + utc_to_esmf(
                self.start_utc) + '-{0:02d}'.format(self.fc_hrs)
        self.emails = self.parse_emails(args)
        self.domains = args['domains']
        self.ignitions = args.get('ignitions', None)
        self.fmda = self.parse_fmda(args)
        self.postproc = args['postproc']
        self.wrfxpy_dir = args['sys_install_path']
        self.args = args
        logging.debug('JobState initialized: ' + str(self))
コード例 #7
0
ファイル: forecast.py プロジェクト: openwfm/wrfxpy
    def __init__(self, args):
        """
        Initialize the job state from the arguments dictionary.

        :param args: the forecast job arguments
        """
        super(JobState, self).__init__(args)
        self.grib_source = self.resolve_grib_source(self.grib_source)
        self.start_utc = round_time_to_hour(self.start_utc, up=False, period_hours=self.grib_source.period_hours);
        self.end_utc = round_time_to_hour(self.end_utc, up=True, period_hours=self.grib_source.period_hours);
        self.fc_hrs = compute_fc_hours(self.start_utc, self.end_utc)
        if 'job_id' in args:
            logging.info('job_id given in the job description.')
            self.job_id = args['job_id']
        else:
            logging.warning('job_id not given, creating.')
            self.job_id = 'wfc-' + self.grid_code + '-' + utc_to_esmf(self.start_utc) + '-{0:02d}'.format(self.fc_hrs)
        self.emails = self.parse_emails(args)
        self.domains = args['domains']
        self.ignitions = args.get('ignitions', None)
        self.fmda = self.parse_fmda(args)
        self.postproc = args['postproc']
        self.wrfxpy_dir = args['sys_install_path']
        self.args = args
コード例 #8
0
ファイル: forecast.py プロジェクト: islenv/wrfxpy
def execute(args):
    """
    Executes a weather/fire simulation.

    The args dictionary contains

    :param args: a dictionary with the following keys
    :param grid_code: the (unique) code of the grid that is used
    :param sys_install_path: system installation directory
    :param start_utc: start time of simulation in UTC
    :param end_utc: end time of simulation in UTC
    :param workspace_path: workspace directory
    :param wps_install_path: installation directory of WPS that will be used
    :param wrf_install_path: installation directory of WRF that will be used
    :param grib_source: a string identifying a valid GRIB2 source
    :param wps_namelist_path: the path to the namelist.wps file that will be used as template
    :param wrf_namelist_path: the path to the namelist.input file that will be used as template
    :param fire_namelist_path: the path to the namelist.fire file that will be used as template
    :param wps_geog_path: the path to the geogrid data directory providing terrain/fuel data
    :param email_notification: dictionary containing keys address and events indicating when a mail should be fired off
    """
    logging.basicConfig(level=logging.INFO)

    # initialize the job state from the arguments
    js = JobState(args)

    logging.info("job %s starting [%d hours to forecast]." % (js.job_id, js.fc_hrs))
    send_email(js, 'start', 'Job %s started.' % js.job_id)

    # read in all namelists
    js.wps_nml = f90nml.read(args['wps_namelist_path'])
    js.wrf_nml = f90nml.read(args['wrf_namelist_path'])
    js.fire_nml = f90nml.read(args['fire_namelist_path'])
    js.ems_nml = None
    if 'emissions_namelist_path' in args:
        js.ems_nml = f90nml.read(args['emissions_namelist_path'])
    
    # Parse and setup the domain configuration
    js.domain_conf = WPSDomainConf(js.domains)

    num_doms = len(js.domain_conf)
    js.wps_nml['share']['start_date'] = [utc_to_esmf(js.start_utc)] * num_doms
    js.wps_nml['share']['end_date'] = [utc_to_esmf(js.end_utc)] * num_doms
    js.wps_nml['share']['interval_seconds'] = 3600

    logging.info("number of domains defined is %d." % num_doms)

    # build directories in workspace
    js.wps_dir = osp.abspath(osp.join(js.workspace_path, js.job_id, 'wps'))
    js.wrf_dir = osp.abspath(osp.join(js.workspace_path, js.job_id, 'wrf'))

    logging.info("cloning WPS into %s" % js.wps_dir)

    # step 1: clone WPS and WRF directories
    cln = WRFCloner(args)
    cln.clone_wps(js.wps_dir, js.grib_source.vtables(), [])

    # step 2: process domain information and patch namelist for geogrid
    js.wps_nml['geogrid']['geog_data_path'] = args['wps_geog_path']
    js.domain_conf.prepare_for_geogrid(js.wps_nml, js.wrf_nml, js.wrfxpy_dir, js.wps_dir)
    f90nml.write(js.wps_nml, osp.join(js.wps_dir, 'namelist.wps'), force=True)

    # do steps 2 & 3 & 4 in parallel (two execution streams)
    #  -> GEOGRID ->
    #  -> GRIB2 download ->  UNGRIB ->

    proc_q = Queue()
    geogrid_proc = Process(target=run_geogrid, args=(js, proc_q))
    grib_proc = Process(target=retrieve_gribs_and_run_ungrib, args=(js, proc_q))

    geogrid_proc.start()
    grib_proc.start()

    # wait until both tasks are done
    geogrid_proc.join()
    grib_proc.join()

    if proc_q.get() != 'SUCCESS':
        return

    if proc_q.get() != 'SUCCESS':
        return

    proc_q.close()

    # step 5: execute metgrid after ensuring all grids will be processed
    js.domain_conf.prepare_for_metgrid(js.wps_nml)
    f90nml.write(js.wps_nml, osp.join(js.wps_dir, 'namelist.wps'), force=True)

    logging.info("running METGRID")
    Metgrid(js.wps_dir).execute().check_output()

    send_email(js, 'metgrid', 'Job %s - metgrid complete.' % js.job_id)
    logging.info("cloning WRF into %s" % js.wrf_dir)

    # step 6: clone wrf directory, symlink all met_em* files
    cln.clone_wrf(js.wrf_dir, [])
    symlink_matching_files(js.wrf_dir, js.wps_dir, "met_em*")

    logging.info("running REAL")

    # step 7: patch input namelist, fire namelist, emissions namelist (if required)
    #         and execute real.exe
    time_ctrl = update_time_control(js.start_utc, js.end_utc, num_doms)
    js.wrf_nml['time_control'].update(time_ctrl)
    update_namelist(js.wrf_nml, js.grib_source.namelist_keys())
    if 'ignitions' in args:
        update_namelist(js.wrf_nml, render_ignitions(js, num_doms))

    # if we have an emissions namelist, automatically turn on the tracers
    if js.ems_nml is not None:
        f90nml.write(js.ems_nml, osp.join(js.wrf_dir, 'namelist.fire_emissions'), force=True)
        js.wrf_nml['dynamics']['tracer_opt'] = [2] * num_doms

    f90nml.write(js.wrf_nml, osp.join(js.wrf_dir, 'namelist.input'), force=True)

    f90nml.write(js.fire_nml, osp.join(js.wrf_dir, 'namelist.fire'), force=True)

    # try to run Real twice as it sometimes fails the first time
    # it's not clear why this error happens 
    try:
        Real(js.wrf_dir).execute().check_output()
    except Exception as e:
        logging.error('Real step failed with exception %s, retrying ...' % str(e))
        Real(js.wrf_dir).execute().check_output()
    

    # step 8: if requested, do fuel moisture DA
    if js.fmda is not None:
        logging.info('running fuel moisture data assimilation')
        for dom in js.fmda.domains:
            assimilate_fm10_observations(osp.join(wrf_dir, 'wrfinput_d%02d' % dom), None, js.fmda.token)

    logging.info('submitting WRF job')
    send_email(js, 'wrf_submit', 'Job %s - wrf job submitted.' % js.job_id)

    # step 8: execute wrf.exe on parallel backend
    js.task_id = "sim-" + js.grid_code + "-" + utc_to_esmf(js.start_utc)[:10]
    WRF(js.wrf_dir, js.qsys).submit(js.task_id, js.num_nodes, js.ppn, js.wall_time_hrs)

    send_email(js, 'wrf_exec', 'Job %s - wrf job starting now with id %s.' % (js.job_id, js.task_id))
    logging.info("WRF job submitted with id %s, waiting for rsl.error.0000" % js.task_id)

    # step 9: wait for appearance of rsl.error.0000 and open it
    wrf_out = None
    while wrf_out is None:
        try:
            wrf_out = open(osp.join(js.wrf_dir, 'rsl.error.0000'))
            break
        except IOError:
            logging.info('forecast: waiting 10 seconds for rsl.error.0000 file')
        
        time.sleep(5)
    
    logging.info('Detected rsl.error.0000')

    # step 10: track log output and check for history writes fro WRF
    pp = None
    already_sent_files, max_pp_dom = [], -1
    if js.postproc is not None:
        js.pp_dir = osp.join(js.workspace_path, js.job_id, "products")
        make_dir(js.pp_dir)
        pp = Postprocessor(js.pp_dir, 'wfc-' + js.grid_code)
	max_pp_dom = max([int(x) for x in filter(lambda x: len(x) == 1, js.postproc)])

    while True:
        line = wrf_out.readline().strip()
        if not line:
            time.sleep(0.2)
            continue

        if "SUCCESS COMPLETE WRF" in line:
            send_email(js, 'complete', 'Job %s - wrf job complete SUCCESS.' % js.job_id)
            logging.info("WRF completion detected.")
            break

        if "Timing for Writing wrfout" in line:
            esmf_time,domain_str = re.match(r'.*wrfout_d.._([0-9_\-:]{19}) for domain\ +(\d+):' ,line).groups()
            dom_id = int(domain_str)
            logging.info("Detected history write for domain %d for time %s." % (dom_id, esmf_time))
            if js.postproc is not None and str(dom_id) in js.postproc:
                var_list = [str(x) for x in js.postproc[str(dom_id)]]
                logging.info("Executing postproc instructions for vars %s for domain %d." % (str(var_list), dom_id))
                wrfout_path = find_fresh_wrfout(js.wrf_dir, dom_id)
            try:
                pp.process_vars(wrfout_path, dom_id, esmf_time, var_list)
            except Exception as e:
                logging.warning('Failed to postprocess for time %s with error %s.' % (esmf_time, str(e)))

            # if this is the last processed domain for this timestamp in incremental mode, upload to server
            if dom_id == max_pp_dom and js.postproc.get('shuttle', None) == 'incremental':
                desc = js.postproc['description'] if 'description' in js.postproc else js.job_id
                sent_files_1 = send_product_to_server(args, js.pp_dir, js.job_id, js.job_id, desc, already_sent_files)
                logging.info('sent %d files to visualization server.'  % len(sent_files_1))
                already_sent_files = filter(lambda x: not x.endswith('json'), already_sent_files + sent_files_1)

    # if we are to send out the postprocessed files after completion, this is the time
    if js.postproc.get('shuttle', None) == 'on_completion':
        desc = js.postproc['description'] if 'description' in js.postproc else js.job_id
        send_product_to_server(args, js.pp_dir, js.job_id, js.job_id, desc)
コード例 #9
0
ファイル: forecast.py プロジェクト: auteuov/wrfxpy
def execute(args, job_args):
    """
    Executes a weather/fire simulation.

    :param args: a dictionary with all to start the simulationfollowing keys
    :param job_args: a the original json given the forecast

    Keys in args:
    :param grid_code: the (unique) code of the grid that is used
    :param sys_install_path: system installation directory
    :param start_utc: start time of simulation in UTC
    :param end_utc: end time of simulation in UTC
    :param workspace_path: workspace directory
    :param wps_install_path: installation directory of WPS that will be used
    :param wrf_install_path: installation directory of WRF that will be used
    :param grib_source: a string identifying a valid GRIB2 source
    :param wps_namelist_path: the path to the namelist.wps file that will be used as template
    :param wrf_namelist_path: the path to the namelist.input file that will be used as template
    :param fire_namelist_path: the path to the namelist.fire file that will be used as template
    :param wps_geog_path: the path to the geogrid data directory providing terrain/fuel data
    :param email_notification: dictionary containing keys address and events indicating when a mail should be fired off
 
    
    """

    logging.info('step 0 initialize the job state from the arguments')
    ## logging.info('args = %s' % json.dumps(jargs, open(osp.join(jobdir,'input.json'),'w'), indent=4, separators=(',', ': ')))
    js = JobState(args)
    ## logging.info('js = %s' % json.dumps(js, open(osp.join(jobdir,'input.json'),'w'), indent=4, separators=(',', ': ')))

    jobdir = osp.abspath(osp.join(js.workspace_path, js.job_id))
    make_clean_dir(jobdir)

    json.dump(job_args,
              open(osp.join(jobdir, 'input.json'), 'w'),
              indent=4,
              separators=(',', ': '))
    jsub = make_job_file(js)
    json.dump(jsub, open(jsub.jobfile, 'w'), indent=4, separators=(',', ': '))

    logging.info("job %s starting [%d hours to forecast]." %
                 (js.job_id, js.fc_hrs))
    sys.stdout.flush()
    send_email(js, 'start', 'Job %s started.' % js.job_id)

    # read in all namelists
    js.wps_nml = read_namelist(js.args['wps_namelist_path'])
    js.wrf_nml = read_namelist(js.args['wrf_namelist_path'])
    js.fire_nml = read_namelist(js.args['fire_namelist_path'])
    js.ems_nml = None
    if 'emissions_namelist_path' in js.args:
        js.ems_nml = read_namelist(js.args['emissions_namelist_path'])

    # Parse and setup the domain configuration
    js.domain_conf = WPSDomainConf(js.domains)

    js.num_doms = len(js.domain_conf)
    js.wps_nml['share']['interval_seconds'] = js.grib_source[
        0].interval_seconds

    logging.info("number of domains defined is %d." % js.num_doms)

    # build directories in workspace
    js.wps_dir = osp.abspath(osp.join(js.workspace_path, js.job_id, 'wps'))
    js.wrf_dir = osp.abspath(osp.join(js.workspace_path, js.job_id, 'wrf'))

    #check_obj(args,'args')
    #check_obj(js,'Initial job state')

    logging.info("step 1: clone WPS and WRF directories")
    logging.info("cloning WPS into %s" % js.wps_dir)
    cln = WRFCloner(js.args)
    cln.clone_wps(js.wps_dir, [])
    js.grib_source[0].clone_vtables(js.wps_dir)

    logging.info(
        "step 2: process domain information and patch namelist for geogrid")
    js.wps_nml['share']['start_date'] = [utc_to_esmf(js.start_utc)
                                         ] * js.num_doms
    js.wps_nml['share']['end_date'] = [utc_to_esmf(js.end_utc)] * js.num_doms
    js.wps_nml['geogrid']['geog_data_path'] = js.args['wps_geog_path']
    js.domain_conf.prepare_for_geogrid(js.wps_nml, js.wrf_nml, js.wrfxpy_dir,
                                       js.wps_dir)
    f90nml.write(js.wps_nml, osp.join(js.wps_dir, 'namelist.wps'), force=True)

    # do steps 2 & 3 & 4 in parallel (two execution streams)
    #  -> GEOGRID ->
    #  -> GRIB2 download ->  UNGRIB ->

    proc_q = Queue()

    geogrid_proc = Process(target=run_geogrid, args=(js, proc_q))
    # grib_proc = Process(target=retrieve_gribs_and_run_ungrib_all, args=(js, proc_q, ref_utc))
    grib_proc = {}
    for grib_source in js.grib_source:
        grib_proc[grib_source.id] = Process(
            target=retrieve_gribs_and_run_ungrib,
            args=(js, grib_source, proc_q))

    logging.info('starting GEOGRID and GRIB2/UNGRIB')

    if js.ungrib_only:
        logging.info(
            'ungrib_only set, skipping GEOGRID, will exit after UNGRIB')
    else:
        geogrid_proc.start()

    for grib_source in js.grib_source:
        grib_proc[grib_source.id].start()

    # wait until all tasks are done
    logging.info('waiting until all tasks are done')

    for grib_source in js.grib_source:
        grib_proc[grib_source.id].join()

    if js.ungrib_only:
        return
    else:
        geogrid_proc.join()

    for grib_source in js.grib_source:
        if proc_q.get() != 'SUCCESS':
            return

    if proc_q.get() != 'SUCCESS':
        return

    proc_q.close()

    logging.info(
        "step 5: execute metgrid after ensuring all grids will be processed")
    update_namelist(js.wps_nml, js.grib_source[0].namelist_wps_keys())
    js.domain_conf.prepare_for_metgrid(js.wps_nml)
    logging.info("namelist.wps for METGRID: %s" %
                 json.dumps(js.wps_nml, indent=4, separators=(',', ': ')))
    f90nml.write(js.wps_nml, osp.join(js.wps_dir, 'namelist.wps'), force=True)

    logging.info("running METGRID")
    Metgrid(js.wps_dir).execute().check_output()

    send_email(js, 'metgrid', 'Job %s - metgrid complete.' % js.job_id)
    logging.info("METGRID complete")

    logging.info("cloning WRF into %s" % js.wrf_dir)

    logging.info(
        "step 6: clone wrf directory, symlink all met_em* files, make namelists"
    )
    cln.clone_wrf(js.wrf_dir, [])
    symlink_matching_files(js.wrf_dir, js.wps_dir, "met_em*")
    time_ctrl = update_time_control(js.start_utc, js.end_utc, js.num_doms)
    js.wrf_nml['time_control'].update(time_ctrl)
    js.wrf_nml['time_control']['interval_seconds'] = js.grib_source[
        0].interval_seconds
    update_namelist(js.wrf_nml, js.grib_source[0].namelist_keys())
    if 'ignitions' in js.args:
        update_namelist(js.wrf_nml, render_ignitions(js, js.num_doms))

    # if we have an emissions namelist, automatically turn on the tracers
    if js.ems_nml is not None:
        logging.debug('namelist.fire_emissions given, turning on tracers')
        f90nml.write(js.ems_nml,
                     osp.join(js.wrf_dir, 'namelist.fire_emissions'),
                     force=True)
        js.wrf_nml['dynamics']['tracer_opt'] = [2] * js.num_doms

    f90nml.write(js.wrf_nml,
                 osp.join(js.wrf_dir, 'namelist.input'),
                 force=True)

    f90nml.write(js.fire_nml,
                 osp.join(js.wrf_dir, 'namelist.fire'),
                 force=True)

    # step 7: execute real.exe

    logging.info("running REAL")
    # try to run Real twice as it sometimes fails the first time
    # it's not clear why this error happens
    try:
        Real(js.wrf_dir).execute().check_output()
    except Exception as e:
        logging.error('Real step failed with exception %s, retrying ...' %
                      str(e))
        Real(js.wrf_dir).execute().check_output()

    logging.info('step 7b: if requested, do fuel moisture DA')
    logging.info('fmda = %s' % js.fmda)
    if js.fmda is not None:
        logging.info('running fuel moisture data assimilation')
        for dom in js.fmda.domains:
            logging.info('assimilate_fm10_observations for domain %s' % dom)
            assimilate_fm10_observations(
                osp.join(js.wrf_dir, 'wrfinput_d%02d' % int(dom)), None,
                js.fmda.token)

    # step 8: execute wrf.exe on parallel backend
    logging.info('submitting WRF job')
    send_email(js, 'wrf_submit', 'Job %s - wrf job submitted.' % js.job_id)

    js.task_id = "sim-" + js.grid_code + "-" + utc_to_esmf(js.start_utc)[:10]
    jsub.job_num = WRF(js.wrf_dir, js.qsys).submit(js.task_id, js.num_nodes,
                                                   js.ppn, js.wall_time_hrs)

    send_email(
        js, 'wrf_exec',
        'Job %s - wrf job starting now with id %s.' % (js.job_id, js.task_id))
    logging.info(
        "WRF job %s submitted with id %s, waiting for rsl.error.0000" %
        (jsub.job_num, js.task_id))

    jobfile = osp.abspath(osp.join(js.workspace_path, js.job_id, 'job.json'))
    json.dump(jsub, open(jobfile, 'w'), indent=4, separators=(',', ': '))

    process_output(js.job_id)
コード例 #10
0
ファイル: forecast.py プロジェクト: auteuov/wrfxpy
def retrieve_gribs_and_run_ungrib(js, grib_source, q):
    """
    This function retrieves required GRIB files and runs ungrib.

    It returns either 'SUCCESS' or 'FAILURE' on completion.

    :param js: the JobState object containing the forecast configuration
    :param grib_source: the GribSource object containing ungrib configuration
    :param q: the multiprocessing Queue into which we will send either 'SUCCESS' or 'FAILURE'
    """
    wps_dir = osp.abspath(js.wps_dir)
    grib_dir = osp.join(wps_dir, grib_source.id)
    make_clean_dir(grib_dir)
    wps_nml = js.wps_nml
    try:
        logging.info("retrieving GRIB files from %s" % grib_source.id)

        download_whole_cycle = js.get('download_whole_cycle', False)
        manifest = grib_source.retrieve_gribs(js.start_utc, js.end_utc,
                                              js.ref_utc, js.cycle_start_utc,
                                              download_whole_cycle)
        # logging.info('manifest: ' + str(manifest))

        cache_colmet = len(manifest) > 1
        have_all_colmet = False
        if cache_colmet:
            have_all_colmet = len(manifest.colmet_missing) == 0
            colmet_dir = osp.join(grib_source.cache_dir,
                                  manifest.colmet_prefix)

        logging.info('cache colmet %s, have all colmet %s' %
                     (cache_colmet, have_all_colmet))

        if not have_all_colmet:
            # this is also if we do not cache
            grib_source.symlink_gribs(manifest.grib_files, grib_dir)

            send_email(
                js, 'grib2', 'Job %s - %d GRIB2 files downloaded.' %
                (js.job_id, len(manifest)))
            logging.info("running UNGRIB for %s" % grib_source.id)

            logging.info(
                "step 4: patch namelist for ungrib end execute ungrib on %s files"
                % grib_source.id)

            update_namelist(wps_nml, grib_source.namelist_wps_keys())
            if cache_colmet:
                wps_nml['share']['start_date'] = [
                    utc_to_esmf(manifest.colmet_files_utc[0])
                ] * js.num_doms
                wps_nml['share']['end_date'] = [
                    utc_to_esmf(manifest.colmet_files_utc[-1])
                ] * js.num_doms

            # logging.info("namelist.wps for UNGRIB: %s" % json.dumps(wps_nml, indent=4, separators=(',', ': ')))
            f90nml.write(wps_nml,
                         osp.join(grib_dir, 'namelist.wps'),
                         force=True)
            grib_source.clone_vtables(grib_dir)
            symlink_unless_exists(osp.join(wps_dir, 'ungrib.exe'),
                                  osp.join(grib_dir, 'ungrib.exe'))

            print(grib_dir + ':')
            os.system('ls -l %s' % grib_dir)

            Ungrib(grib_dir).execute().check_output()

            print(grib_dir + ':')
            os.system('ls -l %s' % grib_dir)

            if cache_colmet:
                # move output to cache directory
                make_dir(colmet_dir)
                for f in manifest.colmet_files:
                    move(osp.join(grib_dir, f), osp.join(colmet_dir, f))
                # now all colmet files should be in the cache

        if cache_colmet:
            for f in manifest.colmet_files:
                symlink_unless_exists(osp.join(colmet_dir, f),
                                      osp.join(wps_dir, f))
        else:
            # move output
            for f in glob.glob(osp.join(grib_dir, grib_source.prefix() + '*')):
                move(f, wps_dir)

        send_email(js, 'ungrib', 'Job %s - ungrib complete.' % js.job_id)
        logging.info('UNGRIB complete for %s' % grib_source.id)
        q.put('SUCCESS')

    except Exception as e:
        logging.error('GRIB2/UNGRIB step failed with exception %s' % repr(e))
        traceback.print_exc()
        q.put('FAILURE')
コード例 #11
0
ファイル: rtma_cycler.py プロジェクト: openwfm/wrfxpy
def postprocess_cycle(cycle, region_cfg, wksp_path, bounds=None):
    """
    Build rasters from the computed fuel moisture.

    :param cycle: the UTC cycle time
    :param region_cfg: the region configuration
    :param wksp_path: the workspace path
    :param bounds: bounding box of the post-processing
    :return: the postprocessing path
    """
    prev_cycle = cycle - timedelta(hours=1)
    post_cycle = cycle + timedelta(hours=1)
    model_path = compute_model_path(cycle, region_cfg.code, wksp_path)
    year_month = '%04d%02d' % (cycle.year, cycle.month)
    prev_year_month = '%04d%02d' % (prev_cycle.year, prev_cycle.month)
    cycle_dir = 'fmda-%s-%04d%02d%02d-%02d' % (
        region_cfg.code, cycle.year, cycle.month, cycle.day, cycle.hour)
    prev_cycle_dir = 'fmda-%s-%04d%02d%02d-%02d' % (
        region_cfg.code, prev_cycle.year, prev_cycle.month, prev_cycle.day,
        prev_cycle.hour)
    postproc_path = osp.join(wksp_path, year_month, cycle_dir)
    prev_postproc_path = osp.join(wksp_path, prev_year_month, prev_cycle_dir)
    manifest_name = cycle_dir + '.json'
    complete_manifest_name = 'fmda-%s.json' % region_cfg.code

    if not is_cycle_computed(cycle, region_cfg,
                             wksp_path) and not osp.exists(prev_postproc_path):
        logging.warning('CYCLER postprocessing failed for time {}'.format(
            str(cycle)))
        return None

    var_wisdom = {
        'dfm': {
            'native_unit': '-',
            'colorbar': '-',
            'colormap': 'jet_r',
            'scale': [0.0, 0.4]
        },
        'lfm': {
            'native_unit': '-',
            'colorbar': '-',
            'colormap': 'jet_r',
            'scale': [0.0, 3.0],
            'marker': '^'
        },
        'EQUILd FM': {
            'name': 'Drying equilibrium FM',
            'native_unit': '-',
            'colorbar': 'i-',
            'colormap': 'jet_r',
            'scale': [0.0, 0.4]
        },
        'EQUILw FM': {
            'name': 'Wetting equilibrium FM',
            'native_unit': '-',
            'colorbar': 'i-',
            'colormap': 'jet_r',
            'scale': [0.0, 0.4]
        },
        'RH': {
            'name': 'Relative humidity',
            'native_unit': '%',
            'colorbar': '%',
            'colormap': 'jet_r',
            'scale': [0.0, 100.0]
        },
        'TD': {
            'name': 'Dew point temperature at 2m',
            'native_unit': 'K',
            'colorbar': 'F',
            'colormap': 'jet',
            'scale': [270.0, 320.0]
        },
        'T2': {
            'name': 'Temperature at 2m',
            'native_unit': 'K',
            'colorbar': 'F',
            'colormap': 'jet',
            'scale': [270.0, 320.0]
        },
        'PRECIPA': {
            'name': 'RTMA precipa',
            'native_unit': 'kg/m^2/h',
            'colorbar': 'kg/m^2/h',
            'colormap': 'jet_r',
            'scale': [0.0, 2.0]
        },
        'PRECIP': {
            'name': 'Precipitation',
            'native_unit': 'mm/h',
            'colorbar': 'mm/h',
            'colormap': 'jet_r',
            'scale': [0.0, 2.0]
        },
        'HGT': {
            'name': 'Terrain height',
            'native_unit': 'm',
            'colorbar': 'm',
            'colormap': 'jet_r',
            'scale': [-86.0, 4500.0]
        },
    }

    show = [
        'TD', 'PRECIPA', 'T2', 'HGT', 'PRECIP', 'RH', 'EQUILd FM', 'EQUILw FM'
    ]
    show = ['T2', 'HGT', 'PRECIP', 'RH']

    esmf_cycle = utc_to_esmf(cycle)
    mf = {"1": {esmf_cycle: {}}}
    ensure_dir(osp.join(postproc_path, manifest_name))

    if not is_cycle_computed(cycle, region_cfg, wksp_path):
        logging.info(
            'CYCLER copying postprocessing from cycle {} to cycle {}'.format(
                str(prev_cycle), str(cycle)))
        prev_manifest_name = prev_cycle_dir + '.json'
        prev_esmf_cycle = utc_to_esmf(prev_cycle)
        prev_mf = json.load(
            open(osp.join(prev_postproc_path, prev_manifest_name), 'r'))
        for name in prev_mf['1'][prev_esmf_cycle].keys():
            prev_raster_name = prev_mf['1'][prev_esmf_cycle][name]['raster']
            prev_cb_name = prev_mf['1'][prev_esmf_cycle][name]['colorbar']
            raster_name = cycle_dir + '-%s-raster.png' % name
            cb_name = cycle_dir + '-%s-raster-cb.png' % name
            coords = prev_mf['1'][prev_esmf_cycle][name]['coords']
            alpha = prev_mf['1'][prev_esmf_cycle][name].get('alpha', None)
            force_copy(osp.join(prev_postproc_path, prev_raster_name),
                       osp.join(postproc_path, raster_name))
            force_copy(osp.join(prev_postproc_path, prev_cb_name),
                       osp.join(postproc_path, cb_name))
            if alpha:
                mf["1"][esmf_cycle][name] = {
                    'raster': raster_name,
                    'coords': coords,
                    'colorbar': cb_name,
                    'alpha': alpha
                }
            else:
                mf["1"][esmf_cycle][name] = {
                    'raster': raster_name,
                    'coords': coords,
                    'colorbar': cb_name
                }
    else:
        if bounds is None:
            bounds = (region_cfg.bbox[1], region_cfg.bbox[3],
                      region_cfg.bbox[0], region_cfg.bbox[2])
        # read in the longitudes and latitudes
        geo_path = osp.join(wksp_path, '%s-geo.nc' % region_cfg.code)
        logging.info(
            'CYCLER reading longitudes and latitudes from NetCDF file %s' %
            geo_path)
        d = netCDF4.Dataset(geo_path)
        lats = d.variables['XLAT'][:, :]
        lons = d.variables['XLONG'][:, :]
        d.close()
        # read and process model variables
        with netCDF4.Dataset(model_path) as d:
            for name in show:
                raster_png, coords, cb_png, levels = scalar_field_to_raster(
                    d.variables[name][:, :], lats, lons, var_wisdom[name])
                write_postprocess(mf, postproc_path, cycle_dir, esmf_cycle,
                                  name, raster_png, coords, cb_png, levels, .5)
            for i, name in [(0, '1-hr DFM'), (1, '10-hr DFM'),
                            (2, '100-hr DFM')]:
                fm_wisdom = var_wisdom['dfm']
                fm_wisdom['name'] = 'Estimated %s' % name
                raster_png, coords, cb_png, levels = scalar_field_to_raster(
                    d.variables['FMC_GC'][:, :, i], lats, lons, fm_wisdom)
                write_postprocess(mf, postproc_path, cycle_dir, esmf_cycle,
                                  name, raster_png, coords, cb_png, levels, .5)
        if osp.exists('src/ingest/MesoDB'):
            from ingest.MesoDB.mesoDB import mesoDB
            db = mesoDB('ingest/MesoDB')
            db.update['startTime'] = cycle - timedelta(hours=1)
            db.update['endTime'] = cycle + timedelta(hours=1)
            db.params['startTime'] = cycle - timedelta(hours=1)
            db.params['endTime'] = cycle + timedelta(hours=1)
            db.params['longitude1'], db.params['longitude2'], db.params[
                'latitude1'], db.params['latitude2'] = bounds
            if is_cycle_computed(cycle, region_cfg, wksp_path):
                db.params['updateDB'] = False
            df = db.get_DB()
            st = db.sites()
            data = df.groupby('STID').mean().join(st[['LONGITUDE',
                                                      'LATITUDE']])
            meso_wisdom = var_wisdom['dfm']
            meso_wisdom['name'] = 'MesoWest 10-hr DFM'
            meso_wisdom['bbox'] = bounds
            meso_wisdom['text'] = False
            raster_png, coords, cb_png, levels = scatter_to_raster(
                np.array(data['fm10']) / 100.,
                np.array(data['LATITUDE']).astype(float),
                np.array(data['LONGITUDE']).astype(float), meso_wisdom)
            name = 'MESO 10-hr DFM'
            write_postprocess(mf, postproc_path, cycle_dir, esmf_cycle, name,
                              raster_png, coords, cb_png, levels, 1.)
        # NFMDB observations
        if osp.exists('src/ingest/FMDB'):
            from ingest.FMDB.FMDB import FMDB
            from ingest.FMDB.utils import filter_outliers
            period_length = 7  # period in days
            period_num = np.ceil(cycle.day / period_length)
            db = FMDB('ingest/NFMDB')
            db.params['startYear'] = 2019
            data = db.get_data()
            data = filter_outliers(data)
            data['fuel_type'] = data['fuel_type'].fillna('None').str.upper()
            data['fuel_variation'] = data['fuel_variation'].fillna(
                'None').str.upper()
            sts = db.sites()
            data = data.join(sts[['lng', 'lat']], 'site_number')
            # mask space
            lats = data['lat']
            lons = data['lng']
            data = data[np.logical_and(
                lats <= bounds[3],
                np.logical_and(
                    lats >= bounds[2],
                    np.logical_and(lons <= bounds[1], lons >= bounds[0])))]
            dates = data['date'].dt.tz_localize(pytz.UTC)
            # calculate top 5 LFM to always plot the same
            top = 5
            hist_data = data[dates.dt.year <= 2020]
            hist_dfm_mask = np.array([
                '-HOUR' in ft for ft in np.array(hist_data['fuel_type'])
            ]).astype(bool)
            hist_df_lfm = hist_data[~hist_dfm_mask].reset_index(drop=True)
            fts = np.array(hist_df_lfm[[
                'fuel_type', 'percent'
            ]].groupby('fuel_type').count().sort_values(
                by='percent', ascending=False).index[:top])
            # mask time
            start = cycle.replace(day=int(period_length * (period_num - 1) +
                                          1),
                                  hour=0,
                                  minute=0,
                                  second=0,
                                  microsecond=0)
            end = cycle
            data = data[np.logical_and(dates >= start, dates <= end)]
            cycle_dir = 'fmda-%s-%04d%02d%02d-%02d' % (region_cfg.code,
                                                       start.year, start.month,
                                                       start.day, start.hour)
            # mask dead and live fuel moisture
            dfm_mask = np.array([
                '-HOUR' in ft for ft in np.array(data['fuel_type'])
            ]).astype(bool)
            df_dfm = data[dfm_mask].reset_index(drop=True)
            df_lfm = data[~dfm_mask].reset_index(drop=True)
            # plot NFMDB dead fuel moisture
            for i, name in [('1-HOUR', 'NFMDB 1-hr DFM'),
                            ('10-HOUR', 'NFMDB 10-hr DFM'),
                            ('100-HOUR', 'NFMDB 100-hr DFM'),
                            ('1000-HOUR', 'NFMDB 1000-hr DFM')]:
                fmdb_wisdom = var_wisdom['dfm']
                fmdb_wisdom['name'] = name
                fmdb_wisdom['bbox'] = bounds
                fmdb_wisdom['text'] = True
                fmdb_wisdom['size'] = 40
                fmdb_wisdom['linewidth'] = 1.
                data = df_dfm[df_dfm['fuel_type'] == i]
                raster_png, coords, cb_png, levels = scatter_to_raster(
                    np.array(data['percent']) / 100., np.array(data['lat']),
                    np.array(data['lng']), fmdb_wisdom)
                write_postprocess(mf, postproc_path, cycle_dir, esmf_cycle,
                                  name, raster_png, coords, cb_png, levels, 1.)
            # plot NFMDB live fuel moisture
            df_lfm = df_lfm.sort_values('date').groupby(
                ['site_number', 'fuel_type']).last().reset_index()
            for ft in fts:
                name = 'NFMDB {} LFM'.format(ft)
                fmdb_wisdom = var_wisdom['lfm']
                fmdb_wisdom['name'] = name
                fmdb_wisdom['bbox'] = bounds
                fmdb_wisdom['text'] = True
                fmdb_wisdom['size'] = 40
                fmdb_wisdom['linewidth'] = 1.
                data = df_lfm[df_lfm['fuel_type'] == ft]
                raster_png, coords, cb_png, levels = scatter_to_raster(
                    np.array(data['percent']) / 100., np.array(data['lat']),
                    np.array(data['lng']), fmdb_wisdom)
                write_postprocess(mf, postproc_path, cycle_dir, esmf_cycle,
                                  name, raster_png, coords, cb_png, levels, 1.)
            name = 'NFMDB OTHERS LFM'
            fmdb_wisdom = var_wisdom['lfm']
            fmdb_wisdom['name'] = name
            fmdb_wisdom['bbox'] = bounds
            fmdb_wisdom['text'] = True
            fmdb_wisdom['size'] = 40
            fmdb_wisdom['linewidth'] = 1.
            data = df_lfm[~df_lfm['fuel_type'].isin(fts)]
            data = data.groupby('site_number').mean()
            raster_png, coords, cb_png, levels = scatter_to_raster(
                np.array(data['percent']) / 100., np.array(data['lat']),
                np.array(data['lng']), fmdb_wisdom)
            write_postprocess(mf, postproc_path, cycle_dir, esmf_cycle, name,
                              raster_png, coords, cb_png, levels, 1.)

    logging.info('writing manifest file %s' %
                 osp.join(postproc_path, manifest_name))
    json.dump(mf,
              open(osp.join(postproc_path, manifest_name), 'w'),
              indent=1,
              separators=(',', ':'))
    logging.info(json.dumps(mf))
    if osp.exists(osp.join(prev_postproc_path, complete_manifest_name)):
        complete_mf = json.load(
            open(osp.join(prev_postproc_path, complete_manifest_name), 'r'))
        complete_mf['1'].update(mf['1'])
        json.dump(complete_mf,
                  open(osp.join(postproc_path, complete_manifest_name), 'w'),
                  indent=1,
                  separators=(',', ':'))
    else:
        json.dump(mf,
                  open(osp.join(postproc_path, complete_manifest_name), 'w'),
                  indent=1,
                  separators=(',', ':'))

    return postproc_path
コード例 #12
0
def questionnaire():
    """
    Give a questionnaire to the user (with sensible default) to create
    a simple domain configuration.

    :return: a dictionary with the configuration of a fire simulation
    """
    cfg = {}

    cfg['wps_namelist_path'] = 'etc/nlists/default.wps'
    cfg['wrf_namelist_path'] = 'etc/nlists/default.input'
    cfg['fire_namelist_path'] = 'etc/nlists/default.fire'
    cfg['emissions_namelist_path'] = 'etc/nlists/default.fire_emissions'

    print_question('Enter a name for your job [default = experiment]:')
    cfg['grid_code'] = read_string('experiment')
    print_answer('Name is %s' % cfg['grid_code'])

    print_header('IGNITION section')
    newline()

    print_question(
        'Enter the ignition point as lat, lon [default = 39.1, -104.3]:')
    ign_latlon = read_location('39.1, -104.3')
    print_answer('Ignition point is at latlon %g %g' % ign_latlon)

    print_question(
        'Enter the ignition time in UTC timezone as an ESMF string or relative time'
    )
    print(
        'Examples: 2016-03-30_16:00:00 or T-60 or T+30 (minutes), [default = now]'
    )
    ign_utc = read_time_indicator('T+0')
    print_answer('Ignition time is %s\n' % str(ign_utc))

    print_question(
        'Enter the duration of the ignition process in seconds [default = 240]'
    )
    ign_dur = read_integer('240')
    print_answer('The ignition will remain active for %d seconds.' % ign_dur)

    newline()
    print_header('SIMULATION section')

    start_utc = utils.round_time_to_hour(ign_utc - timedelta(minutes=30))
    while True:
        print_question(
            'Enter the start time of the simulation in UTC timezone [default = 30 mins before ignition time]'
        )
        start_utc = read_time_indicator(utils.utc_to_esmf(start_utc))
        start_utc = utils.round_time_to_hour(start_utc)
        if start_utc < ign_utc:
            break
        print(('Simulation start must be before ignition time %s' %
               utils.utc_to_esmf(ign_utc)))
    cfg['start_utc'] = utils.utc_to_esmf(start_utc)
    print_answer('Simulation will start at %s.' % cfg['start_utc'])

    end_utc = start_utc + timedelta(hours=5)
    while True:
        print_question(
            'Enter the end time of the simulation [default = start_time + 5 hours]'
        )
        end_utc = read_time_indicator(utils.utc_to_esmf(end_utc))
        end_utc = utils.round_time_to_hour(end_utc, True)
        if end_utc > ign_utc:
            break
        print(('Simulation end must be after ignition time %s' %
               utils.utc_to_esmf(ign_utc)))
    cfg['end_utc'] = utils.utc_to_esmf(end_utc)
    print_answer('Simulation will end at %s.' % cfg['end_utc'])

    print_question(
        'Please enter the cell size in meters for the atmospheric mesh [default 1000]'
    )
    cell_size = read_integer('1000')
    print_answer('The cell size is %d meters.' % cell_size)

    print_question(
        'Enter the number of grid cells in the longitudinal and latitudinal position [default 61, 61]'
    )
    domain_size = read_size('61, 61')
    print_answer('The domain size is %d x %d grid points.' % domain_size)

    print_question('Enter the refinement ratio for the fire grid [default=40]')
    refinement = read_integer('40')
    print_answer(
        'The refinement ratio is %d for a fire mesh size of %g meters.' %
        (refinement, float(cell_size) / refinement))

    print_question(
        'Enter the interval between output frames in minutes [default=15]')
    history_interval = read_integer('15')
    print_answer('The interval between output frames is %d minutes.' %
                 history_interval)

    cfg['grib_source'] = select_grib_source(start_utc)
    print_answer('Selected GRIB2 source %s' % cfg['grib_source'])

    print_question('Process satellite data? [default=no]')
    sat = read_boolean('no')
    if sat:
        cfg['satellite_source'] = ["Aqua", "Terra", "SNPP"]
        print_answer('Selected Satellite sources %s' % cfg['satellite_source'])
    else:
        print_answer('No Satellite sources selected.')

    def_geog_path = None
    try:
        def_geog_path = json.load(open('etc/conf.json'))['wps_geog_path']
    except Exception as e:
        print(e)
        pass
    print_question(
        'Enter the path to geogrid information (WPS-GEOG) [default=%s]' %
        def_geog_path)
    cfg['wps_geog_path'] = read_string(def_geog_path)
    print_answer('The WPS-GEOG path is %s' % cfg['wps_geog_path'])

    cfg['domains'] = {
        '1': {
            'cell_size': (cell_size, cell_size),
            'domain_size': domain_size,
            'subgrid_ratio': (refinement, refinement),
            'geog_res': '.3s',
            'center_latlon': ign_latlon,
            'truelats': (ign_latlon[0], ign_latlon[0]),
            'stand_lon': ign_latlon[1],
            'history_interval': history_interval,
            'time_step': max(1, 5 * cell_size // 1000)
        }
    }

    cfg['ignitions'] = {
        '1': [{
            'time_utc': utils.utc_to_esmf(ign_utc),
            'duration_s': ign_dur,
            'latlon': ign_latlon
        }]
    }

    print_header('PARALLEL JOB configuration')
    print_question('Enter number of parallel nodes [default=8]')
    cfg['num_nodes'] = read_integer('8')
    print_answer('Parallel job will use %d nodes.' % cfg['num_nodes'])

    print_question('Enter number of cores per node [default=12]')
    cfg['ppn'] = read_integer('12')
    print_answer('Parallel job will use %d cores per node.' % cfg['ppn'])

    print_question('Enter the max walltime in hours [default=2]')
    cfg['wall_time_hrs'] = read_integer('2')
    print_answer('Parallel job will reserve %d hours of walltime.' %
                 cfg['wall_time_hrs'])

    qsys_opts = queuing_systems()
    while True:
        def_qsys = socket.gethostname().split('.')[0]
        print(('Enter queuing system [choices are %s, default is %s]' %
               (qsys_opts, def_qsys)))
        cfg['qsys'] = read_string(def_qsys)
        if cfg['qsys'] in qsys_opts:
            break
        print('Invalid queuing system selected, please try again')
    print_answer('Parallel job will submit for %s' % cfg['qsys'])

    print_header('POSTPROCESSING')
    print_question(
        'Which variables should wrfxpy postprocess? [default T2,PSFC,WINDSPD,WINDVEC,FIRE_AREA,FGRNHFX,FLINEINT,SMOKE_INT]'
    )
    pp_vars = read_string(
        'T2,PSFC,WINDSPD,WINDVEC,FIRE_AREA,FGRNHFX,FLINEINT,SMOKE_INT').split(
            ',')
    print_answer('Will postprocess %d variables.' % len(pp_vars))

    print_question('Send variables to visualization server? [default=no]')
    shuttle = read_boolean('no')

    desc = ''
    if shuttle:
        print_question(
            'Enter a short description of your job [default=experimental run]')
        desc = read_string('experimental run')

    cfg['postproc'] = {'1': pp_vars}
    if shuttle:
        cfg['postproc']['shuttle'] = 'incremental'
        cfg['postproc']['description'] = desc

    return cfg
コード例 #13
0
ファイル: forecast.py プロジェクト: openwfm/wrfxpy
def execute(args,job_args):
    """
    Executes a weather/fire simulation.

    :param args: a dictionary with all to start the simulationfollowing keys
    :param job_args: a the original json given the forecast

    Keys in args:
    :param grid_code: the (unique) code of the grid that is used
    :param sys_install_path: system installation directory
    :param start_utc: start time of simulation in UTC
    :param end_utc: end time of simulation in UTC
    :param workspace_path: workspace directory
    :param wps_install_path: installation directory of WPS that will be used
    :param wrf_install_path: installation directory of WRF that will be used
    :param grib_source: a string identifying a valid GRIB2 source
    :param wps_namelist_path: the path to the namelist.wps file that will be used as template
    :param wrf_namelist_path: the path to the namelist.input file that will be used as template
    :param fire_namelist_path: the path to the namelist.fire file that will be used as template
    :param wps_geog_path: the path to the geogrid data directory providing terrain/fuel data
    :param email_notification: dictionary containing keys address and events indicating when a mail should be fired off
 
    
    """

    # step 0 initialize the job state from the arguments
    js = JobState(args)

    jobdir = osp.abspath(osp.join(js.workspace_path, js.job_id))
    make_clean_dir(jobdir)

    json.dump(job_args, open(osp.join(jobdir,'input.json'),'w'), indent=4, separators=(',', ': '))
    jsub = make_job_file(js)
    json.dump(jsub, open(jsub.jobfile,'w'), indent=4, separators=(',', ': '))
 
    logging.info("job %s starting [%d hours to forecast]." % (js.job_id, js.fc_hrs))
    sys.stdout.flush()
    send_email(js, 'start', 'Job %s started.' % js.job_id)

    # read in all namelists
    js.wps_nml = f90nml.read(js.args['wps_namelist_path'])
    js.wrf_nml = f90nml.read(js.args['wrf_namelist_path'])
    js.fire_nml = f90nml.read(js.args['fire_namelist_path'])
    js.ems_nml = None
    if 'emissions_namelist_path' in js.args:
        js.ems_nml = f90nml.read(js.args['emissions_namelist_path'])
    
    # Parse and setup the domain configuration
    js.domain_conf = WPSDomainConf(js.domains)

    num_doms = len(js.domain_conf)
    js.wps_nml['share']['start_date'] = [utc_to_esmf(js.start_utc)] * num_doms
    js.wps_nml['share']['end_date'] = [utc_to_esmf(js.end_utc)] * num_doms
    js.wps_nml['share']['interval_seconds'] = 3600

    logging.info("number of domains defined is %d." % num_doms)

    # build directories in workspace
    js.wps_dir = osp.abspath(osp.join(js.workspace_path, js.job_id, 'wps'))
    js.wrf_dir = osp.abspath(osp.join(js.workspace_path, js.job_id, 'wrf'))

    #check_obj(args,'args')
    #check_obj(js,'Initial job state')

    # step 1: clone WPS and WRF directories
    logging.info("cloning WPS into %s" % js.wps_dir)
    cln = WRFCloner(js.args)
    cln.clone_wps(js.wps_dir, js.grib_source.vtables(), [])

    # step 2: process domain information and patch namelist for geogrid
    js.wps_nml['geogrid']['geog_data_path'] = js.args['wps_geog_path']
    js.domain_conf.prepare_for_geogrid(js.wps_nml, js.wrf_nml, js.wrfxpy_dir, js.wps_dir)
    f90nml.write(js.wps_nml, osp.join(js.wps_dir, 'namelist.wps'), force=True)

    # do steps 2 & 3 & 4 in parallel (two execution streams)
    #  -> GEOGRID ->
    #  -> GRIB2 download ->  UNGRIB ->

    proc_q = Queue()
    geogrid_proc = Process(target=run_geogrid, args=(js, proc_q))
    grib_proc = Process(target=retrieve_gribs_and_run_ungrib, args=(js, proc_q))


    logging.info('starting GEOGRID and GRIB2/UNGRIB')
    geogrid_proc.start()
    grib_proc.start()

    # wait until both tasks are done
    logging.info('waiting until both tasks are done')
    grib_proc.join()
    geogrid_proc.join()

    if proc_q.get() != 'SUCCESS':
        return

    if proc_q.get() != 'SUCCESS':
        return

    proc_q.close()

    # step 5: execute metgrid after ensuring all grids will be processed
    js.domain_conf.prepare_for_metgrid(js.wps_nml)
    f90nml.write(js.wps_nml, osp.join(js.wps_dir, 'namelist.wps'), force=True)

    logging.info("running METGRID")
    Metgrid(js.wps_dir).execute().check_output()

    send_email(js, 'metgrid', 'Job %s - metgrid complete.' % js.job_id)
    logging.info("cloning WRF into %s" % js.wrf_dir)

    # step 6: clone wrf directory, symlink all met_em* files, make namelists
    cln.clone_wrf(js.wrf_dir, [])
    symlink_matching_files(js.wrf_dir, js.wps_dir, "met_em*")
    time_ctrl = update_time_control(js.start_utc, js.end_utc, num_doms)
    js.wrf_nml['time_control'].update(time_ctrl)
    update_namelist(js.wrf_nml, js.grib_source.namelist_keys())
    if 'ignitions' in js.args:
        update_namelist(js.wrf_nml, render_ignitions(js, num_doms))

    # if we have an emissions namelist, automatically turn on the tracers
    if js.ems_nml is not None:
        logging.debug('namelist.fire_emissions given, turning on tracers')
        f90nml.write(js.ems_nml, osp.join(js.wrf_dir, 'namelist.fire_emissions'), force=True)
        js.wrf_nml['dynamics']['tracer_opt'] = [2] * num_doms

    f90nml.write(js.wrf_nml, osp.join(js.wrf_dir, 'namelist.input'), force=True)

    f90nml.write(js.fire_nml, osp.join(js.wrf_dir, 'namelist.fire'), force=True)

    # step 7: execute real.exe
    
    logging.info("running REAL")
    # try to run Real twice as it sometimes fails the first time
    # it's not clear why this error happens 
    try:
        Real(js.wrf_dir).execute().check_output()
    except Exception as e:
        logging.error('Real step failed with exception %s, retrying ...' % str(e))
        Real(js.wrf_dir).execute().check_output()
    

    # step 7b: if requested, do fuel moisture DA
    if js.fmda is not None:
        logging.info('running fuel moisture data assimilation')
        for dom in js.fmda.domains:
            assimilate_fm10_observations(osp.join(wrf_dir, 'wrfinput_d%02d' % dom), None, js.fmda.token)

    # step 8: execute wrf.exe on parallel backend
    logging.info('submitting WRF job')
    send_email(js, 'wrf_submit', 'Job %s - wrf job submitted.' % js.job_id)

    js.task_id = "sim-" + js.grid_code + "-" + utc_to_esmf(js.start_utc)[:10]
    jsub.job_num=WRF(js.wrf_dir, js.qsys).submit(js.task_id, js.num_nodes, js.ppn, js.wall_time_hrs)

    send_email(js, 'wrf_exec', 'Job %s - wrf job starting now with id %s.' % (js.job_id, js.task_id))
    logging.info("WRF job %s submitted with id %s, waiting for rsl.error.0000" % (jsub.job_num, js.task_id))
  
    jobfile = osp.abspath(osp.join(js.workspace_path, js.job_id,'job.json'))
    json.dump(jsub, open(jobfile,'w'), indent=4, separators=(',', ': '))

    process_output(js.job_id)
コード例 #14
0
def execute(args):
    """
    Executes a weather/fire simulation.

    The args dictionary contains

    :param args: a dictionary with the following keys
    :param grid_code: the (unique) code of the grid that is used
    :param sys_install_path: system installation directory
    :param start_utc: start time of simulation in UTC
    :param end_utc: end time of simulation in UTC
    :param workspace_path: workspace directory
    :param wps_install_path: installation directory of WPS that will be used
    :param wrf_install_path: installation directory of WRF that will be used
    :param grib_source: a string identifying a valid GRIB2 source
    :param wps_namelist_path: the path to the namelist.wps file that will be used as template
    :param wrf_namelist_path: the path to the namelist.input file that will be used as template
    :param fire_namelist_path: the path to the namelist.fire file that will be used as template
    :param wps_geog_path: the path to the geogrid data directory providing terrain/fuel data
    :param email_notification: dictionary containing keys address and events indicating when a mail should be fired off
    """
    logging.basicConfig(level=logging.INFO)

    # initialize the job state from the arguments
    js = JobState(args)

    logging.info("job %s starting [%d hours to forecast]." %
                 (js.job_id, js.fc_hrs))
    send_email(js, 'start', 'Job %s started.' % js.job_id)

    # read in all namelists
    js.wps_nml = f90nml.read(args['wps_namelist_path'])
    js.wrf_nml = f90nml.read(args['wrf_namelist_path'])
    js.fire_nml = f90nml.read(args['fire_namelist_path'])
    js.ems_nml = None
    if 'emissions_namelist_path' in args:
        js.ems_nml = f90nml.read(args['emissions_namelist_path'])

    # Parse and setup the domain configuration
    js.domain_conf = WPSDomainConf(js.domains)

    num_doms = len(js.domain_conf)
    js.wps_nml['share']['start_date'] = [utc_to_esmf(js.start_utc)] * num_doms
    js.wps_nml['share']['end_date'] = [utc_to_esmf(js.end_utc)] * num_doms
    js.wps_nml['share']['interval_seconds'] = 3600

    logging.info("number of domains defined is %d." % num_doms)

    # build directories in workspace
    js.wps_dir = osp.abspath(osp.join(js.workspace_path, js.job_id, 'wps'))
    js.wrf_dir = osp.abspath(osp.join(js.workspace_path, js.job_id, 'wrf'))

    logging.info("cloning WPS into %s" % js.wps_dir)

    # step 1: clone WPS and WRF directories
    cln = WRFCloner(args)
    cln.clone_wps(js.wps_dir, js.grib_source.vtables(), [])

    # step 2: process domain information and patch namelist for geogrid
    js.wps_nml['geogrid']['geog_data_path'] = args['wps_geog_path']
    js.domain_conf.prepare_for_geogrid(js.wps_nml, js.wrf_nml, js.wrfxpy_dir,
                                       js.wps_dir)
    f90nml.write(js.wps_nml, osp.join(js.wps_dir, 'namelist.wps'), force=True)

    # do steps 2 & 3 & 4 in parallel (two execution streams)
    #  -> GEOGRID ->
    #  -> GRIB2 download ->  UNGRIB ->

    proc_q = Queue()
    geogrid_proc = Process(target=run_geogrid, args=(js, proc_q))
    grib_proc = Process(target=retrieve_gribs_and_run_ungrib,
                        args=(js, proc_q))

    geogrid_proc.start()
    grib_proc.start()

    # wait until both tasks are done
    geogrid_proc.join()
    grib_proc.join()

    if proc_q.get() != 'SUCCESS':
        return

    if proc_q.get() != 'SUCCESS':
        return

    proc_q.close()

    # step 5: execute metgrid after ensuring all grids will be processed
    js.domain_conf.prepare_for_metgrid(js.wps_nml)
    f90nml.write(js.wps_nml, osp.join(js.wps_dir, 'namelist.wps'), force=True)

    logging.info("running METGRID")
    Metgrid(js.wps_dir).execute().check_output()

    send_email(js, 'metgrid', 'Job %s - metgrid complete.' % js.job_id)
    logging.info("cloning WRF into %s" % js.wrf_dir)

    # step 6: clone wrf directory, symlink all met_em* files
    cln.clone_wrf(js.wrf_dir, [])
    symlink_matching_files(js.wrf_dir, js.wps_dir, "met_em*")

    logging.info("running REAL")

    # step 7: patch input namelist, fire namelist, emissions namelist (if required)
    #         and execute real.exe
    time_ctrl = update_time_control(js.start_utc, js.end_utc, num_doms)
    js.wrf_nml['time_control'].update(time_ctrl)
    update_namelist(js.wrf_nml, js.grib_source.namelist_keys())
    if 'ignitions' in args:
        update_namelist(js.wrf_nml, render_ignitions(js, num_doms))

    # if we have an emissions namelist, automatically turn on the tracers
    if js.ems_nml is not None:
        f90nml.write(js.ems_nml,
                     osp.join(js.wrf_dir, 'namelist.fire_emissions'),
                     force=True)
        js.wrf_nml['dynamics']['tracer_opt'] = [2] * num_doms

    f90nml.write(js.wrf_nml,
                 osp.join(js.wrf_dir, 'namelist.input'),
                 force=True)

    f90nml.write(js.fire_nml,
                 osp.join(js.wrf_dir, 'namelist.fire'),
                 force=True)

    # try to run Real twice as it sometimes fails the first time
    # it's not clear why this error happens
    try:
        Real(js.wrf_dir).execute().check_output()
    except Exception as e:
        logging.error('Real step failed with exception %s, retrying ...' %
                      str(e))
        Real(js.wrf_dir).execute().check_output()

    # step 8: if requested, do fuel moisture DA
    if js.fmda is not None:
        logging.info('running fuel moisture data assimilation')
        for dom in js.fmda.domains:
            assimilate_fm10_observations(
                osp.join(wrf_dir, 'wrfinput_d%02d' % dom), None, js.fmda.token)

    logging.info('submitting WRF job')
    send_email(js, 'wrf_submit', 'Job %s - wrf job submitted.' % js.job_id)

    # step 8: execute wrf.exe on parallel backend
    js.task_id = "sim-" + js.grid_code + "-" + utc_to_esmf(js.start_utc)[:10]
    WRF(js.wrf_dir, js.qsys).submit(js.task_id, js.num_nodes, js.ppn,
                                    js.wall_time_hrs)

    send_email(
        js, 'wrf_exec',
        'Job %s - wrf job starting now with id %s.' % (js.job_id, js.task_id))
    logging.info("WRF job submitted with id %s, waiting for rsl.error.0000" %
                 js.task_id)

    # step 9: wait for appearance of rsl.error.0000 and open it
    wrf_out = None
    while wrf_out is None:
        try:
            wrf_out = open(osp.join(js.wrf_dir, 'rsl.error.0000'))
            break
        except IOError:
            logging.info(
                'forecast: waiting 10 seconds for rsl.error.0000 file')

        time.sleep(5)

    logging.info('Detected rsl.error.0000')

    # step 10: track log output and check for history writes fro WRF
    pp = None
    already_sent_files, max_pp_dom = [], -1
    if js.postproc is not None:
        js.pp_dir = osp.join(js.workspace_path, js.job_id, "products")
        make_dir(js.pp_dir)
        pp = Postprocessor(js.pp_dir, 'wfc-' + js.grid_code)
        max_pp_dom = max(
            [int(x) for x in filter(lambda x: len(x) == 1, js.postproc)])

    while True:
        line = wrf_out.readline().strip()
        if not line:
            time.sleep(0.2)
            continue

        if "SUCCESS COMPLETE WRF" in line:
            send_email(js, 'complete',
                       'Job %s - wrf job complete SUCCESS.' % js.job_id)
            logging.info("WRF completion detected.")
            break

        if "Timing for Writing wrfout" in line:
            esmf_time, domain_str = re.match(
                r'.*wrfout_d.._([0-9_\-:]{19}) for domain\ +(\d+):',
                line).groups()
            dom_id = int(domain_str)
            logging.info("Detected history write for domain %d for time %s." %
                         (dom_id, esmf_time))
            if js.postproc is not None and str(dom_id) in js.postproc:
                var_list = [str(x) for x in js.postproc[str(dom_id)]]
                logging.info(
                    "Executing postproc instructions for vars %s for domain %d."
                    % (str(var_list), dom_id))
                wrfout_path = find_fresh_wrfout(js.wrf_dir, dom_id)
            try:
                pp.process_vars(wrfout_path, dom_id, esmf_time, var_list)
            except Exception as e:
                logging.warning(
                    'Failed to postprocess for time %s with error %s.' %
                    (esmf_time, str(e)))

            # if this is the last processed domain for this timestamp in incremental mode, upload to server
            if dom_id == max_pp_dom and js.postproc.get('shuttle',
                                                        None) == 'incremental':
                desc = js.postproc[
                    'description'] if 'description' in js.postproc else js.job_id
                sent_files_1 = send_product_to_server(args, js.pp_dir,
                                                      js.job_id, js.job_id,
                                                      desc, already_sent_files)
                logging.info('sent %d files to visualization server.' %
                             len(sent_files_1))
                already_sent_files = filter(lambda x: not x.endswith('json'),
                                            already_sent_files + sent_files_1)

    # if we are to send out the postprocessed files after completion, this is the time
    if js.postproc.get('shuttle', None) == 'on_completion':
        desc = js.postproc[
            'description'] if 'description' in js.postproc else js.job_id
        send_product_to_server(args, js.pp_dir, js.job_id, js.job_id, desc)
コード例 #15
0
ファイル: simple_forecast.py プロジェクト: islenv/wrfxpy
def questionnaire():
    """
    Give a questionnaire to the user (with sensible default) to create
    a simple domain configuration.
    
    :return: a dictionary with the configuration of a fire simulation
    """
    cfg = {}

    cfg['wps_namelist_path'] = 'etc/nlists/default.wps'
    cfg['wrf_namelist_path'] = 'etc/nlists/default.input'
    cfg['fire_namelist_path'] = 'etc/nlists/default.fire'
    cfg['emissions_namelist_path'] = 'etc/nlists/default.fire_emissions'

    print_question('Enter a name for your job [default = experiment]:')
    cfg['grid_code'] = read_string('experiment')
    print_answer('Name is %s' % cfg['grid_code'])

    print_header('IGNITION section')
    newline()

    print_question('Enter the ignition point as lat, lon [default = 39.1, -104.3]:')
    ign_latlon = read_location('39.1, -104.3')
    print_answer('Ignition point is at latlon %g %g' % ign_latlon)

    print_question('Enter the ignition time in UTC timezone as an ESMF string or relative time')
    print('Examples: 2016-03-30_16:00:00 or T-60 or T+30 (minutes), [default = now]')
    ign_utc = read_time_indicator('T+0') 
    print_answer('Ignition time is %s\n' % str(ign_utc))

    print_question('Enter the duration of the ignition process in seconds [default = 240]')
    ign_dur = read_integer('240')
    print_answer('The ignition will remain active for %d seconds.' % ign_dur)

    newline()
    print_header('SIMULATION section')

    start_utc = utils.round_time_to_hour(ign_utc - timedelta(minutes=30))
    while True:
        print_question('Enter the start time of the simulation in UTC timezone [default = 30 mins before ignition time]')
        start_utc = read_time_indicator(utils.utc_to_esmf(start_utc))
        start_utc = utils.round_time_to_hour(start_utc)
        if start_utc < ign_utc:
            break
        print('Simulation start must be before ignition time %s' % utils.utc_to_esmf(ign_utc))
    cfg['start_utc'] = utils.utc_to_esmf(start_utc)
    print_answer('Simulation will start at %s.' % cfg['start_utc'])
    
    end_utc = start_utc + timedelta(hours=5)
    while True:
        print_question('Enter the end time of the simulation [default = start_time + 5 hours]')
        end_utc = read_time_indicator(utils.utc_to_esmf(end_utc))
        end_utc = utils.round_time_to_hour(end_utc, True)
        if end_utc > ign_utc:
            break
        print('Simulation end must be after ignition time %s' % utils.utc_to_esmf(ign_utc))
    cfg['end_utc'] = utils.utc_to_esmf(end_utc)
    print_answer('Simulation will end at %s.' % cfg['end_utc'])

    print_question('Please enter the cell size in meters for the atmospheric mesh [default 1000]')
    cell_size = read_integer('1000')
    print_answer('The cell size is %d meters.' % cell_size)

    print_question('Enter the number of grid cells in the longitudinal and latitudinal position [default 61, 61]')
    domain_size = read_size('61, 61')
    print_answer('The domain size is %d x %d grid points.' % domain_size)

    print_question('Enter the refinement ratio for the fire grid [default=40]')
    refinement = read_integer('40')
    print_answer('The refinement ratio is %d for a fire mesh size of %g meters.' % (refinement, float(cell_size)/refinement))

    print_question('Enter the interval between output frames in minutes [default=15]')
    history_interval = read_integer('15')
    print_answer('The interval between output frames is %d minutes.' % history_interval)

    cfg['grib_source'] = select_grib_source(start_utc)
    print_answer('Selected GRIB2 source %s' % cfg['grib_source'])

    def_geog_path = None
    try:
        def_geog_path = json.load(open('etc/conf.json'))['wps_geog_path']
    except Exception as e:
        print(e)
        pass
    print_question('Enter the path to geogrid information (WPS-GEOG) [default=%s]' % def_geog_path)
    cfg['wps_geog_path'] = read_string(def_geog_path)
    print_answer('The WPS-GEOG path is %s' % cfg['wps_geog_path'])

    cfg['domains'] = { '1' : {
        'cell_size' : (cell_size,cell_size),
        'domain_size' : domain_size,
        'subgrid_ratio' : (refinement, refinement),
        'geog_res' : '.3s',
        'center_latlon' : ign_latlon,
        'truelats' : (ign_latlon[0], ign_latlon[0]),
        'stand_lon' : ign_latlon[1],
        'history_interval' : history_interval,
        'time_step' : max(1, 5 * cell_size / 1000)
        }
    }

    cfg['ignitions'] = { '1' : [ { 'time_utc' : utils.utc_to_esmf(ign_utc),
                                   'duration_s' : ign_dur,
                                   'latlon' : ign_latlon } ] }


    print_header('PARALLEL JOB configuration')
    print_question('Enter number of parallel nodes [default=8]')
    cfg['num_nodes'] = read_integer('8')
    print_answer('Parallel job will use %d nodes.' % cfg['num_nodes'])

    print_question('Enter number of cores per node [default=12]')
    cfg['ppn'] = read_integer('12')
    print_answer('Parallel job will use %d cores per node.' % cfg['ppn'])

    print_question('Enter the max walltime in hours [default=2]')
    cfg['wall_time_hrs'] = read_integer('2')
    print_answer('Parallel job will reserve %d hours of walltime.' % cfg['wall_time_hrs'])

    qsys_opts = queuing_systems()
    while True:
        def_qsys = socket.gethostname().split('.')[0]
        print('Enter queuing system [choices are %s, default is %s]' % (qsys_opts, def_qsys))
        cfg['qsys'] = read_string(def_qsys)
        if cfg['qsys'] in qsys_opts:
            break
        print('Invalid queuing system selected, please try again')
    print_answer('Parallel job will submit for %s' % cfg['qsys'])

    print_header('POSTPROCESSING')
    print_question('Which variables should wrfxpy postprocess? [default T2,PSFC,WINDSPD,WINDVEC,FIRE_AREA,FGRNHFX,FLINEINT,SMOKE_INT]')
    pp_vars = read_string('T2,PSFC,WINDSPD,WINDVEC,FIRE_AREA,FGRNHFX,FLINEINT,SMOKE_INT').split(',')
    print_answer('Will postprocess %d variables.' % len(pp_vars))

    print_question('Send variables to visualization server? [default=no]')
    shuttle = read_boolean('no')

    desc = ''
    if shuttle:
        print_question('Enter a short description of your job [default=experimental run]')
        desc = read_string('experimental run')
    
    cfg['postproc'] = { '1' : pp_vars }
    if shuttle:
        cfg['postproc']['shuttle'] = 'incremental'
        cfg['postproc']['description'] = desc

    return cfg
コード例 #16
0
def postprocess_cycle(cycle, region_cfg, wksp_path):
    """
    Build rasters from the computed fuel moisture.

    :param cycle: the UTC cycle time
    :param region_cfg: the region configuration
    :param wksp_path: the workspace path
    :return: the postprocessing path
    """
    model_path = compute_model_path(cycle, region_cfg.code, wksp_path)
    year_month = '%04d%02d' % (cycle.year, cycle.month)
    cycle_dir = 'fmda-%s-%04d%02d%02d-%02d' %  (region_cfg.code, cycle.year, cycle.month, cycle.day, cycle.hour)
    postproc_path = osp.join(wksp_path, year_month, cycle_dir)

    # read in the longitudes and latitudes
    geo_path = osp.join(wksp_path, '%s-geo.nc' % region_cfg.code)
    logging.info('CYCLER reading longitudes and latitudes from NetCDF file %s' % geo_path )
    d = netCDF4.Dataset(geo_path)
    lats = d.variables['XLAT'][:,:]
    lons = d.variables['XLONG'][:,:]
    d.close()

    var_wisdom = {
        'fm' : {
            'native_unit' : '-',
            'colorbar' : '-',
            'colormap' : 'jet_r',
            'scale' : [0.0, 0.4]
        },
        'EQUILd FM' : {
            'name' : 'Drying equilibrium FM',
            'native_unit' : '-',
            'colorbar' : 'i-',
            'colormap' : 'jet_r',
            'scale' : [0.0, 0.4]
        },
        'EQUILw FM' : {
            'name' : 'Wetting equilibrium FM',
            'native_unit' : '-',
            'colorbar' : 'i-',
            'colormap' : 'jet_r',
            'scale' : [0.0, 0.4]
        },
        'RH' : {
            'name' : 'Relative humidity',
            'native_unit' : '%',
            'colorbar' : '%',
            'colormap' : 'jet_r',
            'scale' : [0.0, 100.0]
        },
        'TD' : {
            'name' : 'Dew point temperature at 2m',
            'native_unit' : 'K',
            'colorbar' : 'F',
            'colormap' : 'jet',
            'scale' : [270.0, 320.0]
        },
        'T2' : {
            'name' : 'Temperature at 2m',
            'native_unit' : 'K',
            'colorbar' : 'F',
            'colormap' : 'jet',
            'scale' : [270.0, 320.0]
        },
        'PRECIPA' : {
            'name' : 'RTMA precipa',
            'native_unit' : 'kg/m^2/h',
            'colorbar' : 'kg/m^2/h',
            'colormap' : 'jet_r',
            'scale' : [0.0, 2.0]
        },
        'PRECIP' : {
            'name' : 'Precipitation',
            'native_unit' : 'mm/h',
            'colorbar' : 'mm/h',
            'colormap' : 'jet_r',
            'scale' : [0.0, 2.0]
        },
        'HGT' : {
            'name' : 'Terrain height',
            'native_unit' : 'm',
            'colorbar' : 'm',
            'colormap' : 'jet_r',
            'scale' : [-86.0, 4500.0]
        },
    }

    show = ['TD','PRECIPA','T2','HGT','PRECIP','RH','EQUILd FM','EQUILw FM']
    show = ['T2','HGT','PRECIP','RH']

    esmf_cycle = utc_to_esmf(cycle) 
    mf = { "1" : {esmf_cycle : {}}}
    manifest_name = 'fmda-%s-%04d%02d%02d-%02d.json' %  (region_cfg.code, cycle.year, cycle.month, cycle.day, cycle.hour)
    ensure_dir(osp.join(postproc_path, manifest_name))
    
    # read and process model variables
    with netCDF4.Dataset(model_path) as d:
        for i,name in [(0, '1-hr FM'), (1, '10-hr FM'), (2, '100-hr FM')]:
            fm_wisdom = var_wisdom['fm']
            fm_wisdom['name'] = '%s fuel moisture' % name
            raster_png, coords, cb_png = scalar_field_to_raster(d.variables['FMC_GC'][:,:,i], lats, lons, fm_wisdom)
            raster_name = 'fmda-%s-raster.png' % name
            cb_name = 'fmda-%s-raster-cb.png' % name
            with open(osp.join(postproc_path, raster_name), 'wb') as f:
                f.write(raster_png)
            with open(osp.join(postproc_path, cb_name), 'wb') as f:
                f.write(cb_png) 
            mf["1"][esmf_cycle][name] = { 'raster' : raster_name, 'coords' : coords, 'colorbar' : cb_name }
        for name in show:
            raster_png, coords, cb_png = scalar_field_to_raster(d.variables[name][:,:], lats, lons, var_wisdom[name])
            raster_name = 'fmda-%s-raster.png' % name
            cb_name = 'fmda-%s-raster-cb.png' % name
            with open(osp.join(postproc_path, raster_name), 'wb') as f:
                f.write(raster_png)
            with open(osp.join(postproc_path, cb_name), 'wb') as f:
                f.write(cb_png) 
            mf["1"][esmf_cycle][name] = { 'raster' : raster_name, 'coords' : coords, 'colorbar' : cb_name }

    logging.info('writing manifest file %s' % osp.join(postproc_path, manifest_name) )
    json.dump(mf, open(osp.join(postproc_path, manifest_name), 'w'), indent=1, separators=(',',':'))
    #logging.info(json.dumps(mf, indent=1, separators=(',',':')))
    logging.info(json.dumps(mf))

    return postproc_path