コード例 #1
0
ファイル: test_gaussian.py プロジェクト: zpleunis/Ratings2.0
def fit_and_plot(cand):
    data = cand.profile
    n = len(data)
    xs = np.linspace(0.0, 1.0, n, endpoint=False)
    G = gauss._compute_data(cand)
    print "k: %g, log(k): %g" % (G.k, np.log10(G.k))
    test_ks = np.logspace(np.log10(G.k)-2, np.log10(G.k)+1, 1e3)
    #test_ks = np.exp(np.linspace(np.log(1e-1),np.log(1e3),1e3))
    
    plt.figure(1)
    resids = [gauss._rms_residual(k,data) for k in test_ks]
    plt.loglog(test_ks,resids,color="green", label="_nolabel_")
    #plt.axvline(true_k,color="red", label="true k")
    best_k = test_ks[np.argmin(resids)]
    plt.axvline(best_k,color="green", label="best k")
    plt.axvline(G.k,color="cyan", label="k from fit")
    plt.ylabel("RMS of residuals")
    plt.xlabel("Value of k used (i.e. held fixed) when fitting")
    plt.legend(loc="best")

    plt.figure(2)
    mue, ae, be = gauss._fit_all_but_k(best_k, data)
    #plt.plot(xs, true_prof, color="red", label="true")
    plt.plot(xs, data, color="black", label="data")
    plt.plot(xs, (ae*utils.vonmises_histogram(best_k,mue,n)+be), color="green", label="exhaustive best fit")
    plt.plot(xs, G.histogram(n), color="cyan", label="best fit")

    plt.legend(loc="best")
    plt.show()
コード例 #2
0
ファイル: test_gaussian.py プロジェクト: zpleunis/Ratings2.0
def fake_profile(cand):
    # Modify profile data and remove existing gaussian fit
    print "create fake profile to fit"
    true_k = 8
    n = 128
    s = 10
    a = 10
    mu = 0.1

    k2 = 30
    a2 = 10
    mu2 = 0.5
    
    true_prof = a*utils.vonmises_histogram(true_k,mu,n) + a2*utils.vonmises_histogram(k2,mu2,n)
    data = true_prof + s*np.random.randn(n)
        
    import copy
    modcand = copy.deepcopy(cand)
    modcand.profile = data
    del modcand.gaussfit
    return modcand
コード例 #3
0
ファイル: oldvonmises.py プロジェクト: ryanslynch/Ratings2.0
    def _fit_all_but_k(cls, k, data):
        n = len(data)
        fft = np.fft.rfft(data)
        nup = 16*n
        corr = np.fft.irfft(fft*utils.vonmises_coefficient(k, np.arange(len(fft))), nup)
        mu = np.argmax(corr)/float(nup)

        x = utils.vonmises_histogram(k, mu, n)

        data = data - np.mean(data)
        x = x - np.mean(x)
        a = np.dot(data, x)/np.dot(x, x)

        b = np.mean(data) - a*np.mean(x)

        return mu, a, b
コード例 #4
0
ファイル: oldvonmises.py プロジェクト: ryanslynch/Ratings2.0
    def _fit_all_but_k(cls, k, data):
        n = len(data)
        fft = np.fft.rfft(data)
        nup = 16 * n
        corr = np.fft.irfft(
            fft * utils.vonmises_coefficient(k, np.arange(len(fft))), nup)
        mu = np.argmax(corr) / float(nup)

        x = utils.vonmises_histogram(k, mu, n)

        data = data - np.mean(data)
        x = x - np.mean(x)
        a = np.dot(data, x) / np.dot(x, x)

        b = np.mean(data) - a * np.mean(x)

        return mu, a, b
コード例 #5
0
ファイル: oldvonmises.py プロジェクト: ryanslynch/Ratings2.0
 def _rms_residual(cls, k, data):
     n = len(data)
     mu, a, b = cls._fit_all_but_k(k, data)
     return np.sqrt(
         np.mean((data - (a * utils.vonmises_histogram(k, mu, n) + b))**2))
コード例 #6
0
 def histogram(self, n):
     return self.a * utils.vonmises_histogram(self.k, self.mu, n) + self.b
コード例 #7
0
ファイル: dataproducts.py プロジェクト: plazar/Ratings2.0
 def histogram(self, n):
     return self.a*utils.vonmises_histogram(self.k, self.mu, n) + self.b
コード例 #8
0
ファイル: oldvonmises.py プロジェクト: ryanslynch/Ratings2.0
 def _rms_residual(cls, k, data):
     n = len(data)
     mu, a, b = cls._fit_all_but_k(k, data)
     return np.sqrt(np.mean((data-(a*utils.vonmises_histogram(k,mu,n)+b))**2))