コード例 #1
0
    def _read_output(self):

        for i, fname in enumerate(self._output_file_list):            \

            fname = fname.split('num')[-1].split('.raw')[0]

            if self._dataindx == fname:
                # print(self._output_file_list[i])
                dataname = os.path.dirname(self._output_file_list[i]) + \
                           '/' + os.path.basename(self._output_file_list[i]).split('.')[0] + '.bin'
                if os.path.exists(dataname):
                    feat_spec = np.load(dataname.replace('.bin',
                                                         '.npy')).item()
                    feat_shape = feat_spec['shape']
                    feat_max = feat_spec['max']
                    feat = utils.read_raw(dataname).reshape(
                        feat_shape) * np.float32(feat_max)
                else:
                    data = utils.read_raw(self._output_file_list[i])
                    if config.parallel:
                        feat = self.lpsd_dist_p(
                            data, self._dist_num, is_patch=False
                        )  # (The number of samples, config.freq_size, 1, 1)
                    else:
                        feat = self.lpsd_dist(
                            data, self._dist_num, is_patch=False
                        )  # (The number of samples, config.freq_size, 1, 1)
                    utils.write_bin(feat, np.max(np.abs(feat)), dataname)
                    feat_spec = {
                        'shape': feat.shape,
                        'max': np.max(np.abs(feat))
                    }
                    np.save(dataname.replace('.bin', ''), feat_spec)
                # plt.subplot(212)
                # S = librosa.amplitude_to_db(
                #     librosa.stft(data, hop_length=config.win_step,
                #                  win_length=config.win_size, n_fft=config.nfft), ref=np.max)
                # ld.specshow(S, y_axis='linear', hop_length=config.win_step, sr=config.fs)
                #
                # plt.show()
                # data, _ = librosa.load(self._output_file_list[i], config.fs)
                break

        # print('output')
        # if self._is_shuffle:
        #
        #     feat = np.reshape(feat, (-1, self._batch_size, feat.shape[1], feat.shape[2], feat.shape[3]))
        #     feat = np.reshape(feat[self._perm_indx, :], (-1, config.freq_size, 1, 1))
        ''''''
        if self._is_shuffle:

            feat = feat[self._perm_indx, :]

        return np.squeeze(feat)
コード例 #2
0
    def format(self, raw):
        '''
        Raw is the output of the psycopg2 query, a list of lists of lists etc...
        '''
        data = Data()

        data.key = [row[0] for row in raw]
        data.data_id = [row[1] for row in raw]
        data.filename = [row[3] for row in raw]

        #The follwing writes each binary to a file
        for row in raw:
            write_bin(self.write_bin_dir + row[3], row[2])
        return data
コード例 #3
0
ファイル: face_recognizer.py プロジェクト: JianTse/test
    def face_register(self, cvImg, faceId):
        save_path = self.faceDataDir + str(faceId)
        if not os.path.exists(save_path):
            os.mkdir(save_path)
        retDict = {}
        featFn = save_path + '/feat.bin'

        feat_dict = self.face_feature(cvImg)
        if feat_dict['flag'] != 'failure':
            write_bin(feat_dict['feature'], featFn)
            retDict['flag'] = 'successful'
        else:
            retDict['flag'] = 'feature'
        imgFn = save_path + '/face.jpg'
        cv2.imwrite(imgFn, cvImg)
        return retDict
コード例 #4
0
def prepare_args(input_no, poc, poc_fmt):
	global TmpFolder
	# prepare the arguments
	arg_num = len(poc_fmt)
	arg_list = []
	for arg_no in range(arg_num):
		if poc_fmt[arg_no][0] == 'bfile': # write the list into binary file
			content = np.asarray(poc[poc_fmt[arg_no][1]: poc_fmt[arg_no][1]+poc_fmt[arg_no][2]]).astype(np.int)
			tmp_filepath = os.path.join(TmpFolder, 'tmp_%d' % input_no)
			utils.write_bin(tmp_filepath, content)
			arg_list.append(tmp_filepath)
		elif poc_fmt[arg_no][0] == 'int':
			arg_list.append(int(poc[poc_fmt[arg_no][1]]))
		elif poc_fmt[arg_no][0] == 'float':
			arg_list.append(float(poc[poc_fmt[arg_no][1]]))
		elif poc_fmt[arg_no][0] == 'str': # concatenate all the chars together
			arg_list.append(''.join(poc[poc_fmt[arg_no][1]: poc_fmt[arg_no][1]+poc_fmt[arg_no][2]]))
		else:
			raise Exception("ERROR: Unknown poc_fmt -> %s" % poc_fmt[arg_no][0])
	return arg_list
コード例 #5
0
    def _read_input(self, input_file_dir):

        # print("num_file: %.2d" % self._num_file)
        # self._dataindx = input_file_dir.split("num")[1].split('.')[0]
        # dataname = os.path.dirname(input_file_dir) + '/' + os.path.basename(input_file_dir).split('.')[0] + '.npy'

        if self._is_training:

            # print("num_file: %.3d" % self._num_file)
            self._dataindx = input_file_dir.split("num")[1].split('.')[0]
            dataname = os.path.dirname(
                input_file_dir) + '/' + os.path.basename(input_file_dir).split(
                    '.')[0] + '.bin'

            if os.path.exists(dataname):
                # print("num_file: %.2d load..." % self._num_file)

                feat_spec = np.load(dataname.replace('.bin', '.npy')).item()
                feat_size = feat_spec['feat_size']
                feat_shape = feat_spec['feat_shape']
                phase_shape = feat_spec['phase_shape']
                feat_max = feat_spec['max']
                feat_phase = utils.read_raw(dataname) * np.float32(feat_max)
                feat = feat_phase[0:feat_size].reshape(feat_shape)
                phase = feat_phase[feat_size:].reshape(phase_shape)
                # print("num_file: %.2d load... done" % self._num_file)

            else:
                print("num_file: %.2d feature extraction..." % self._num_file)
                # data, _ = librosa.load(input_file_dir, config.fs)
                data = utils.read_raw(input_file_dir)
                # plt.subplot(211)
                #
                # S = librosa.amplitude_to_db(
                #     librosa.stft(data, hop_length=config.win_step,
                #                  win_length=config.win_size, n_fft=config.nfft), ref=np.max)
                # ld.specshow(S, y_axis='linear', hop_length=config.win_step, sr=config.fs)
                if config.parallel:
                    feat, phase = self.lpsd_dist_p(data,
                                                   self._dist_num,
                                                   is_patch=True)
                else:
                    feat, phase = self.lpsd_dist(data,
                                                 self._dist_num,
                                                 is_patch=True)
                feat_size = feat.size
                feat_phase = np.concatenate(
                    (feat.reshape(-1), phase.reshape(-1)))
                utils.write_bin(feat_phase, np.max(np.abs(feat_phase)),
                                dataname)
                feat_spec = {
                    'feat_size': feat_size,
                    'phase_shape': phase.shape,
                    'feat_shape': feat.shape,
                    'max': np.max(np.abs(feat_phase))
                }
                np.save(dataname.replace('.bin', ''), feat_spec)

                print("num_file: %.2d feature extraction... done." %
                      self._num_file)

        else:
            data = np.load(input_file_dir)

            # data, _ = librosa.load(input_file_dir, config.fs)
            if config.parallel:
                feat, phase = self.lpsd_dist_p(data, self._dist_num)
            else:
                feat, phase = self.lpsd_dist(data, self._dist_num)

        # feat shape: (num samples, config.time_width, config.freq_size, 1)

        # if self._is_shuffle:
        #     feat = np.reshape(feat, (-1, self._batch_size, feat.shape[1], feat.shape[2], feat.shape[3]))
        #     self._perm_indx = perm_indx = np.random.permutation(feat.shape[0])
        #     feat = np.reshape(feat[perm_indx, :], (-1, config.time_width, config.freq_size, 1))
        ''''''
        if self._is_shuffle:
            self._perm_indx = perm_indx = np.random.permutation(feat.shape[0])
            feat = feat[perm_indx, :]

        self.num_samples = np.shape(feat)[0]

        if self._is_val:
            phase = np.zeros(feat.shape)

        return feat, phase
コード例 #6
0
                                           fs=config.fs)

            # plt.plot(recon_speech)
            # plt.show()
            # lab = np.reshape(np.asarray(lab), [-1, 1])
            test_dr.reader_initialize()
            break

    return recon_speech


if __name__ == '__main__':

    input_dir = os.path.abspath('./data/train/noisy')
    logs_dir = os.path.abspath('./logs' + '/logs_' +
                               time.strftime("%Y-%m-%d-%H-%M-%S"))
    model_dir = os.path.abspath('./enhanced_wav/enhance_model')
    save_dir = os.path.abspath('./enhanced_wav')
    gs.freeze_graph(logs_dir, model_dir,
                    'model_1/pred,model_1/labels,model_1/cost')

    input_file_list = sorted(glob.glob(input_dir + '/*.raw'))
    graph_name = sorted(glob.glob(save_dir + '/*.pb'))[-1]
    norm_path = os.path.abspath('./data/train/norm')

    for wav_dir in input_file_list:
        recon_speech = speech_enhance(wav_dir, graph_name)
        file_dir = save_dir + '/' + os.path.basename(wav_dir).replace(
            'noisy', 'enhanced')
        utils.write_bin(recon_speech, np.max(np.abs(recon_speech)), file_dir)