コード例 #1
0
                for j in range(nbins_m):

                    mask = (mass_long > mass_bins[j]) & (mass_long <
                                                         mass_bins[j + 1])
                    plot_data[f'minT_{minT[i]}_med'][j] = np.nanmedian(
                        np.log10(ew_no_uvb[mask]) -
                        np.log10(ew_with_uvb[mask]))
                    plot_data[f'minT_{minT[i]}_per25'][j] = np.nanpercentile(
                        np.log10(ew_no_uvb[mask]) -
                        np.log10(ew_with_uvb[mask]), 25.)
                    plot_data[f'minT_{minT[i]}_per75'][j] = np.nanpercentile(
                        np.log10(ew_no_uvb[mask]) -
                        np.log10(ew_with_uvb[mask]), 75.)

            write_dict_to_h5(plot_data, median_file)

        for i in range(len(minT)):
            ax[l].plot(plot_data['mass'],
                       plot_data[f'minT_{minT[i]}_med'],
                       ls='-',
                       c=colors[i],
                       label=r'$T_{{\rm min}} = {{{}}}$'.format(minT[i]))
            if i == len(minT) - 2:
                ax[l].fill_between(plot_data['mass'],
                                   plot_data[f'minT_{minT[i]}_per25'],
                                   plot_data[f'minT_{minT[i]}_per75'],
                                   color=colors[i],
                                   alpha=0.4)

        if l == 0:
コード例 #2
0
                        f'ew_wave_{fr200[j]}r200'].flatten()

                    plot_data[f'minT_{minT[i]}_{bin_label}_med'][
                        j] = np.nanmedian(
                            np.log10(ew_no_uvb[mask]) -
                            np.log10(ew_with_uvb[mask]))
                    plot_data[f'minT_{minT[i]}_{bin_label}_per25'][
                        j] = np.nanpercentile(
                            np.log10(ew_no_uvb[mask]) -
                            np.log10(ew_with_uvb[mask]), 25.)
                    plot_data[f'minT_{minT[i]}_{bin_label}_per75'][
                        j] = np.nanpercentile(
                            np.log10(ew_no_uvb[mask]) -
                            np.log10(ew_with_uvb[mask]), 75)

            write_dict_to_h5(plot_data, profile_file)

        for i in range(len(minT)):

            ax[l].plot(plot_data['fr200'],
                       plot_data[f'minT_{minT[i]}_{bin_label}_med'],
                       ls='-',
                       c=colors[i],
                       label=r'$T_{{\rm min}} = {{{}}}$'.format(minT[i]),
                       lw=1.5)
            if minT[i] == '5.0':
                ax[l].fill_between(
                    plot_data['fr200'],
                    plot_data[f'minT_{minT[i]}_{bin_label}_per75'],
                    plot_data[f'minT_{minT[i]}_{bin_label}_per25'],
                    alpha=0.3,