コード例 #1
0
ファイル: utt.py プロジェクト: Anjalikamath/voice_conversionn
def get_model(hps_path, model_path):
	hps = Hps()
	hps.load(hps_path)
	hps_tuple = hps.get_tuple()
	solver = Solver(hps_tuple, None, None)
	solver.load_model(model_path)
	return solver
コード例 #2
0
def get_model(
        hps_path='./hps/vctk.json',
        model_path='/storage/model/voice_conversion/vctk/clf/model.pkl-109999'
):
    hps = Hps()
    hps.load(hps_path)
    hps_tuple = hps.get_tuple()
    solver = Solver(hps_tuple, None)
    solver.load_model(model_path)
    return solver
コード例 #3
0
ファイル: test.py プロジェクト: AlvinYC/cei_voice_converter
    parser.add_argument('-hps',
                        help='The path of hyper-parameter set',
                        default='vctk.json')
    parser.add_argument('-model', '-m', help='The path of model checkpoint')
    parser.add_argument('-source', '-s', help='The path of source .wav file')
    parser.add_argument(
        '-target',
        '-t',
        help=
        'Target speaker id (integer). Same order as the speaker list when preprocessing (en_speaker_used.txt)'
    )
    parser.add_argument('-output', '-o', help='output .wav path')
    parser.add_argument('-sample_rate', '-sr', default=16000, type=int)
    parser.add_argument('--use_gen', default=True, action='store_true')

    args = parser.parse_args()

    hps = Hps()
    hps.load(args.hps)
    hps_tuple = hps.get_tuple()
    solver = Solver(hps_tuple, None)
    solver.load_model(args.model)
    _, spec = get_spectrograms(args.source)
    spec_expand = np.expand_dims(spec, axis=0)
    spec_tensor = torch.from_numpy(spec_expand).type(torch.FloatTensor)
    c = Variable(torch.from_numpy(np.array([int(args.target)]))).cuda()
    result = solver.test_step(spec_tensor, c, gen=args.use_gen)
    result = result.squeeze(axis=0).transpose((1, 0))
    wav_data = spectrogram2wav(result)
    write(args.output, rate=args.sample_rate, data=wav_data)
コード例 #4
0
                loss = loss_rec - current_alpha * loss_clf
                reset_grad([self.Encoder, self.Decoder])
                loss.backward()
                grad_clip([self.Encoder, self.Decoder], self.hps.max_grad_norm)
                self.ae_opt.step()
                info = {
                    f'{flag}/loss_rec': loss_rec.item(),
                    f'{flag}/G_loss_clf': loss_clf.item(),
                    f'{flag}/alpha': current_alpha,
                    f'{flag}/G_acc': acc,
                }
                slot_value = (iteration + 1, hps.iters) + tuple(
                    [value for value in info.values()])
                log = 'G:[%06d/%06d], loss_rec=%.3f, loss_clf=%.2f, alpha=%.2e, acc=%.2f'
                print(log % slot_value)
                if iteration % 100 == 0:
                    for tag, value in info.items():
                        self.logger.scalar_summary(tag, value, iteration + 1)
                if iteration % 1000 == 0 or iteration + 1 == hps.iters:
                    self.save_model(model_path, iteration)


if __name__ == '__main__':
    hps = Hps()
    hps.load('./hps/v7.json')
    hps_tuple = hps.get_tuple()
    dataset = myDataset('/storage/raw_feature/voice_conversion/vctk/vctk.h5',\
            '/storage/raw_feature/voice_conversion/vctk/64_513_2000k.json')
    data_loader = DataLoader(dataset)
    solver = Solver(hps_tuple, data_loader)
コード例 #5
0
import pickle
from utils import Hps
from utils import DataLoader
from utils import Logger
from utils import myDataset
from utils import Indexer
from solver import Solver
from preprocess.tacotron.utils import spectrogram2wav
#from preprocess.tacotron.audio import inv_spectrogram, save_wav
from scipy.io.wavfile import write
from preprocess.tacotron.mcep import mc2wav

if __name__ == '__main__':
    feature = 'sp'
    hps = Hps()
    hps.load('./hps/v19.json')
    hps_tuple = hps.get_tuple()
    solver = Solver(hps_tuple, None)
    solver.load_model('/storage/model/voice_conversion/v19/model.pkl-59999')
    if feature == 'mc':
        # indexer to extract data
        indexer = Indexer()
        src_mc = indexer.index(speaker_id='225',
                               utt_id='366',
                               dset='test',
                               feature='norm_mc')
        tar_mc = indexer.index(speaker_id='226',
                               utt_id='366',
                               dset='test',
                               feature='norm_mc')
        expand_src_mc = np.expand_dims(src_mc, axis=0)
コード例 #6
0
import argparse

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--train', default=True, action='store_true')
    parser.add_argument('--test', default=False, action='store_true')
    parser.add_argument('--load_model', default=False, action='store_true')
    parser.add_argument('-flag', default='train')
    parser.add_argument('-hps_path', default='./hps/vctk.json')
    parser.add_argument('-load_model_path', default='./pkl/pretrain.pkl')
    parser.add_argument('-dataset_path', default='./vctk.h5')
    parser.add_argument('-index_path', default='./index.json')
    parser.add_argument('-output_model_path', default='./pkl/model.pkl')
    args = parser.parse_args()
    hps = Hps()
    hps.load(args.hps_path)
    hps_tuple = hps.get_tuple()
    dataset = SingleDataset(args.dataset_path,
                            args.index_path,
                            seg_len=hps_tuple.seg_len)

    data_loader = DataLoader(dataset)

    solver = Solver(hps_tuple, data_loader)
    if args.load_model:
        solver.load_model(args.load_model_path)
    if args.train:
        solver.train(args.output_model_path, args.flag, mode='pretrain_G')
        solver.train(args.output_model_path, args.flag, mode='pretrain_D')
        solver.train(args.output_model_path, args.flag, mode='train')
        solver.train(args.output_model_path, args.flag, mode='patchGAN')
コード例 #7
0
    def valid_step(self, batch_x, batch_y):
        loss = self.sess.run(
            self._log_loss,
            feed_dict={self.x:batch_x, self.y:batch_y, self.kp:1.0}
        )
        return loss

    def train_step(self, batch_x, batch_y, coverage=False):
        if not coverage:
            _, loss = self.sess.run(
                [self._nll_opt, self._log_loss], 
                feed_dict={self.x:batch_x, self.y:batch_y, self.kp:self._hps.keep_prob}
            )
        else:
            _, loss = self.sess.run(
                [self._coverage_opt, self._coverage_loss], 
                feed_dict={self.x:batch_x, self.y:batch_y, self.kp:self._hps.keep_prob}
            )
        return loss

if __name__ == '__main__':
    vocab = Vocab()
    hps = Hps()
    hps.load('./hps/cd_v3.json')
    hps_tuple = hps.get_tuple()
    model = PointerModel(hps_tuple, vocab)
    model.init()
    print('model build OK')
    model.tt()