if __name__ == '__main__': # global parameters for distance measures (Manhatten/Euclidean, sym. gem) squared, symmetric = True, True # read split number try: splitN, splitL = int(sys.argv[1]), int(sys.argv[2]) except: raise Exception \ ("python2 MetalError.py splitnumber(int) splitlearn(int)") # read data from database (parentLabels, parent), (childLabels, child) = mdb.read() print "done reading metal data" # downsample time series to 1024 points to reduce computational complexity parent = map(lambda series: mdb.scale(series, length=2**10), parent) child = map(lambda series: mdb.scale(series, length=2**10), child) print "done with the scaling" # znormalize data for all distance measures but gem zparent = map(mdb.znormalize, parent) zchild = map(mdb.znormalize, child) # open file for the logging of results f = open("./results/dn_M-sn_%s-lp_%s-sq_%s-sy_%s" % (splitN, splitL, squared, symmetric), "w")
"""concatenate a bunch of time series""" return np.hstack(tuple(listOfSeries)) def extract(subject, length): """extract a subsequence from subject""" # get left position of extraction window left = np.random.uniform(0, len(subject)-length-1) return subject[left:left+length] if __name__ == '__main__': # read data from database (parentLabels, parent), (childLabels, child) = mdb.read() print "done reading metal data" # read length try: L, N = int(sys.argv[1]), int(sys.argv[2]) except: raise Exception \ ("python2 QueryAndSubjectGeneratorMetall.py L(int) N(int)") # for reproducibility np.random.seed(L) # concatenate database subject, queries = cat(parent), cat(child)
import numpy as np import pylab as pl import scipy.cluster.hierarchy as h import utils.distances as ds import utils.MetalDatabase as mdb # read data from database (parentLabels, parent), (childLabels, child) = mdb.read() print "done reading metal data" # downsample time series to 1024 points to reduce computational complexity parent = map(lambda series: mdb.scale(series, length=2**10), parent) child = map(lambda series: mdb.scale(series, length=2**10), child) print "done with the scaling" # znormalize data for all distance measures but gem zparent = map(mdb.znormalize, parent) zchild = map(mdb.znormalize, child) # taken from dn_M-sn_0-lp_100-sq_True-sy_True LISTCONSDTWONE mask = [ 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,