def run(argv): import argparse import time from utils import Storage parser = argparse.ArgumentParser(description='A CVAE model') args = Storage() parser.add_argument( '--name', type=str, default='CVAE', help= 'The name of your model, used for variable scope and tensorboard, etc. Default: runXXXXXX_XXXXXX (initialized by current time)' ) parser.add_argument( '--restore', type=str, default='last', help= 'Checkpoints name to load. "last" for last checkpoints, "best" for best checkpoints on dev. Attention: "last" and "best" wiil cause unexpected behaviour when run 2 models in the same dir at the same time. Default: None (don\'t load anything)' ) parser.add_argument('--mode', type=str, default="train", help='"train" or "test". Default: train') parser.add_argument('--dataset', type=str, default='SwitchboardCorpus', help='Dataloader class. Default: SwitchboardCorpus') parser.add_argument( '--datapath', type=str, default='resources://SwitchboardCorpus', help='Directory for data set. Default: SwitchboardCorpus') parser.add_argument('--epoch', type=int, default=100, help="Epoch for trainning. Default: 100") parser.add_argument( '--wvclass', type=str, default='Glove', help= "Wordvector class, none for not using pretrained wordvec. Default: Glove" ) parser.add_argument( '--wvpath', type=str, default="resources://Glove200d", help= "Directory for pretrained wordvector. Default: resources://Glove200d") parser.add_argument( '--out_dir', type=str, default="./output", help='Output directory for test output. Default: ./output') parser.add_argument( '--log_dir', type=str, default="./tensorboard", help='Log directory for tensorboard. Default: ./tensorboard') parser.add_argument( '--model_dir', type=str, default="./model", help='Checkpoints directory for model. Default: ./model') parser.add_argument( '--cache_dir', type=str, default="./cache", help='Checkpoints directory for cache. Default: ./cache') parser.add_argument('--cpu', action="store_true", help='Use cpu.') parser.add_argument('--debug', action='store_true', help='Enter debug mode (using ptvsd).') parser.add_argument( '--cache', action='store_true', help= 'Use cache for speeding up load data and wordvec. (It may cause problems when you switch dataset.)' ) cargs = parser.parse_args(argv) # Editing following arguments to bypass command line. args.name = cargs.name or time.strftime("run%Y%m%d_%H%M%S", time.localtime()) args.restore = cargs.restore args.mode = cargs.mode args.dataset = cargs.dataset args.datapath = cargs.datapath args.epochs = cargs.epoch args.wvclass = cargs.wvclass args.wvpath = cargs.wvpath args.out_dir = cargs.out_dir args.log_dir = cargs.log_dir args.model_dir = cargs.model_dir args.cache_dir = cargs.cache_dir args.debug = cargs.debug args.cache = cargs.cache args.cuda = not cargs.cpu args.softmax_samples = 512 args.use_hcf = True args.full_kl_step = 10000 args.latent_size = 200 args.topic_embedding_size = 30 args.da_embedding_size = 30 args.word_embedding_size = 200 args.session_window = 10 args.repeat_N = 2 args.eh_size = 300 args.ch_size = 600 args.dh_size = 400 args.lr = 1e-3 args.lr_decay = 0.995 args.batch_size = 3 args.grad_clip = 5.0 args.show_sample = [0] args.min_vocab_times = 5 args.max_sen_length = 50 args.max_turn_length = 1000 args.checkpoint_steps = 1 args.checkpoint_max_to_keep = 5 import random random.seed(0) from main import main main(args) if args.mode == 'test': import os import json res = {'working_dir': './', 'entry': 'run', 'args': argv} if os.path.exists("./result.json"): res.update(json.load(open("./result.json"))) json.dump(res, open("result.json", "w"))
def run(): import argparse import time from utils import Storage parser = argparse.ArgumentParser(description='A hred model') args = Storage() parser.add_argument( '--name', type=str, default='hred', help= 'The name of your model, used for variable scope and tensorboard, etc. Default: runXXXXXX_XXXXXX (initialized by current time)' ) parser.add_argument( '--restore', type=str, default='last', help= 'Checkpoints name to load. "last" for last checkpoints, "best" for best checkpoints on dev. Attention: "last" and "best" wiil cause unexpected behaviour when run 2 models in the same dir at the same time. Default: None (don\'t load anything)' ) parser.add_argument('--mode', type=str, default="train", help='"train" or "test". Default: train') parser.add_argument('--dataset', type=str, default='UbuntuCorpus', help='Dataloader class. Default: UbuntuCorpus') parser.add_argument('--datapath', type=str, default='./data', help='Directory for data set. Default: ./data') parser.add_argument('--epoch', type=int, default=100, help="Epoch for trainning. Default: 100") parser.add_argument( '--wvclass', type=str, default=None, help= "Wordvector class, none for not using pretrained wordvec. Default: None" ) parser.add_argument( '--wvpath', type=str, default=None, help="Directory for pretrained wordvector. Default: None") parser.add_argument( '--out_dir', type=str, default="./output", help='Output directory for test output. Default: ./output') parser.add_argument( '--log_dir', type=str, default="./tensorboard", help='Log directory for tensorboard. Default: ./tensorboard') parser.add_argument( '--model_dir', type=str, default="./model", help='Checkpoints directory for model. Default: ./model') parser.add_argument( '--cache_dir', type=str, default="./cache", help='Checkpoints directory for cache. Default: ./cache') parser.add_argument('--cpu', action="store_true", help='Use cpu.') parser.add_argument('--debug', action='store_true', help='Enter debug mode (using ptvsd).') parser.add_argument( '--cache', action='store_true', help= 'Use cache for speeding up load data and wordvec. (It may cause problems when you switch dataset.)' ) cargs = parser.parse_args() # Editing following arguments to bypass command line. args.name = cargs.name or time.strftime("run%Y%m%d_%H%M%S", time.localtime()) args.restore = cargs.restore args.mode = cargs.mode args.dataset = cargs.dataset args.datapath = cargs.datapath args.epochs = cargs.epoch args.wvclass = cargs.wvclass args.wvpath = cargs.wvpath args.out_dir = cargs.out_dir args.log_dir = cargs.log_dir args.model_dir = cargs.model_dir args.cache_dir = cargs.cache_dir args.debug = cargs.debug args.cache = cargs.cache args.cuda = not cargs.cpu args.softmax_samples = 512 args.embedding_size = 300 args.eh_size = 200 args.ch_size = 200 args.dh_size = 200 args.lr = 1e-3 args.lr_decay = 0.995 args.batch_size = 128 args.grad_clip = 5.0 args.show_sample = [0] args.min_vocab_times = 50 args.max_sen_length = 50 args.max_turn_length = 11 args.checkpoint_steps = 1000 args.checkpoint_max_to_keep = 5 import random random.seed(0) from main import main main(args)
def run(*argv): parser = argparse.ArgumentParser(description='A hred model') args = Storage() parser.add_argument( '--name', type=str, default='hred', help= 'The name of your model, used for variable scope and tensorboard, etc. Default: runXXXXXX_XXXXXX (initialized by current time)' ) parser.add_argument( '--restore', type=str, default='best', help= 'Checkpoints name to load. "last" for last checkpoints, "best" for best checkpoints on dev. Attention: "last" and "best" wiil cause unexpected behaviour when run 2 models in the same dir at the same time. Default: None (don\'t load anything)' ) parser.add_argument('--mode', type=str, default="train", help='"train" or "test". Default: train') parser.add_argument('--dataset', type=str, default='MyHRED', help='Dataloader class. Default: UbuntuCorpus') parser.add_argument('--datapath', type=str, default='../data/film', help='Directory for data set. Default: UbuntuCorpus') parser.add_argument('--epoch', type=int, default=20, help="Epoch for trainning. Default: 100") parser.add_argument('--batch_size', type=int, default=32, help="The batch size of data when train or test.") parser.add_argument('--max_sent_length', type=int, default=512, help="The max encoded sent length when train.") parser.add_argument('--max_decoder_length', type=int, default=50, help="The max decoded sent length when inference.") parser.add_argument('--num_turns', type=int, default=8, help="The max number of turns of the post field.") parser.add_argument( '--wv_class', type=str, default='TencentChinese', help= "Wordvector class, none for not using pretrained wordvec. Default: Glove" ) parser.add_argument( '--wv_path', type=str, default='wordvector/chinese', help= "Directory for pretrained wordvector. Default: resources://Glove300d") parser.add_argument( '--output_dir', type=str, default="./output/film", help='Output directory for test output. Default: ./output') parser.add_argument( '--log_dir', type=str, default="./tensorboard/film", help='Log directory for tensorboard. Default: ./tensorboard') parser.add_argument( '--model_dir', type=str, default="./model/film", help='Checkpoints directory for model. Default: ./model') parser.add_argument( '--cache_dir', type=str, default="./cache/film", help='Checkpoints directory for cache. Default: ./cache') parser.add_argument('--cpu', action="store_true", help='Use cpu.') parser.add_argument('--debug', action='store_true', help='Enter debug mode (using ptvsd).') parser.add_argument( '--cache', action='store_true', help= 'Use cache for speeding up load data and wordvec. (It may cause problems when you switch dataset.)' ) parser.add_argument('--seed', type=int, default=42, help="The random seed in the train process.") cargs = parser.parse_args(argv) # Editing following arguments to bypass command line. args.name = cargs.name or time.strftime("run%Y%m%d_%H%M%S", time.localtime()) args.restore = cargs.restore args.mode = cargs.mode args.dataset = cargs.dataset args.datapath = cargs.datapath args.epochs = cargs.epoch args.batch_size = cargs.batch_size args.wv_class = cargs.wv_class args.wv_path = cargs.wv_path args.output_dir = cargs.output_dir args.log_dir = cargs.log_dir args.model_dir = cargs.model_dir args.cache_dir = cargs.cache_dir args.debug = cargs.debug args.cache = cargs.cache args.cuda = not cargs.cpu args.seed = cargs.seed args.max_sent_length = cargs.max_sent_length args.max_decoder_length = cargs.max_decoder_length args.num_turns = cargs.num_turns args.softmax_samples = 512 args.embedding_size = 200 args.eh_size = 200 args.ch_size = 200 args.dh_size = 200 args.lr = 1e-3 args.lr_decay = 0.99 args.grad_clip = 5.0 args.show_sample = [0] args.checkpoint_steps = 100 args.checkpoint_max_to_keep = 5 random.seed(args.seed) main(args)
args.datapath = cargs.datapath args.epochs = cargs.epoch args.wvclass = cargs.wvclass args.wvpath = cargs.wvpath args.out_dir = cargs.out_dir args.log_dir = cargs.log_dir args.model_dir = cargs.model_dir args.cache_dir = cargs.cache_dir args.debug = cargs.debug args.cache = cargs.cache args.cuda = not cargs.cpu args.softmax_samples = 512 args.embedding_size = 300 args.eh_size = 200 args.ch_size = 200 args.dh_size = 200 args.lr = 1e-3 args.lr_decay = 0.995 args.batch_size = 128 args.grad_clip = 5.0 args.show_sample = [0] args.min_vocab_times = 50 args.max_sen_length = 50 args.max_turn_length = 11 args.checkpoint_steps = 1000 args.checkpoint_max_to_keep = 5 import random random.seed(0)