def p53(): u = Utils() mat, val = u.binom(100, 100) total = 0 for r in range(len(mat)): for c in range(len(mat[0])): if mat[r][c] > 10 ** 6: total += 1 print total
# Clearly no BOPs exist for k ≥ 4. # # By considering the sum of FITs generated by the BOPs # (indicated in red above), we obtain 1 + 15 + 58 = 74. # # Consider the following tenth degree polynomial generating # function: # # u_n = 1 − n + n^2 − n^3 + n^4 − n^5 + n^6 − n^7 + n^8 − n^9 # + n^10. # Find the sum of FITs for the BOPs. from utils import Utils u_ = Utils() m, val = u_.binom(11, 11) def u(n): return n ** 10 - n ** 9 + n ** 8 - n ** 7 + n ** 6 - n ** 5 + n ** 4 - n ** 3 + n ** 2 - n + 1 U = [u(j) for j in range(1, 12)] def fit(n): l = [((-1) ** (p + (n % 2))) * m[n][p - 1] * U[p - 1] for p in range(1, n + 1)] return sum(l) def p101():
def p15(): u = Utils() print u.binom(40, 20)