def test_which_processor(): # Naive test: Just run the function to see whether it works or does not work which_processor()
ClassificationInterpretation, to_np, ) from fastai.metrics import accuracy import fastai from pathlib import Path import numpy as np import sys # fastai and torch # local modules print(f"Fast.ai version = {fastai.__version__}") which_processor() EPOCHS = 10 LEARNING_RATE = 1e-4 IM_SIZE = 300 BATCH_SIZE = 16 ARCHITECTURE = models.resnet18 path = Path('/app/classifier_data/') data = (ImageList.from_folder(path).split_by_rand_pct( valid_pct=0.2, seed=10).label_from_folder().transform(size=IM_SIZE).databunch( bs=BATCH_SIZE, num_workers=db_num_workers()).normalize(imagenet_stats)) print(f'number of classes: {data.c}')