def od_sample_detection_bboxes(): return [ DetectionBbox.from_array( [109.0, 190.0, 205.0, 408.0], label_idx=3, label_name="carton", score=0.9985, ), DetectionBbox.from_array( [340.0, 326.0, 465.0, 549.0], label_idx=2, label_name="milk_bottle", score=0.9979, ), DetectionBbox.from_array( [214.0, 181.0, 315.0, 460.0], label_idx=1, label_name="can", score=0.9945, ), DetectionBbox.from_array( [215.0, 193.0, 316.0, 471.0], label_idx=2, label_name="milk_bottle", score=0.1470, ), DetectionBbox.from_array( [109.0, 209.0, 209.0, 420.0], label_idx=1, label_name="can", score=0.0903, ), ]
def det_bbox() -> "DetectionBbox": return DetectionBbox(left=0, top=10, right=100, bottom=1000, label_idx=0, score=0.5)
def od_cup_det_bboxes(tmp_session, od_cup_path) -> List[DetectionBbox]: return [ DetectionBbox( left=61, top=59, right=273, bottom=244, label_name="cup", label_idx=0, im_path=od_cup_path, score=0.99, ) ]
def test_detection_bbox_from_array(det_bbox): bbox_from_array = DetectionBbox.from_array([0, 10, 100, 1000], label_idx=0, score=0) validate_bbox(det_bbox) assert type(bbox_from_array) == DetectionBbox