class_means = np.zeros((512, nb_groups * nb_cl, 2, nb_groups)) files_protoset = [] for _ in range(nb_groups * nb_cl): files_protoset.append([]) ### Preparing the files for the training/validation ### np.random.seed(1993) order = np.arange(nb_groups * nb_cl) # Preparing the files per group of classes print("Loading data ...") output_file.write("Loading data ...\n") output_file.flush() files_train, files_valid = utils_data.prepare_files(train_images_path, val_images_path, nb_groups, nb_cl) with open(save_path + str(nb_cl) + 'settings_resnet.pickle', 'wb') as fp: cPickle.dump(order, fp) cPickle.dump(files_valid, fp) cPickle.dump(files_train, fp) ### Start of the main algorithm ### for itera in range(nb_groups): # Files to load : training samples + protoset print('Batch of classes number {0} arrives ...'.format(itera + 1)) output_file.write( 'Batch of classes number {0} arrives ...\n'.format(itera + 1))
np.random.seed(1993) order = np.arange(1000) mixing = np.arange(1000) np.random.shuffle(mixing) # Loading the labels labels_dic, label_names, validation_ground_truth = utils_data.parse_devkit_meta( devkit_path) # Or you can just do like this # define_class = ['apple', 'banana', 'cat', 'dog', 'elephant', 'forg'] # labels_dic = {k: v for v, k in enumerate(define_class)} # Preparing the files per group of classes print("Creating a validation set ...") files_train, files_valid = utils_data.prepare_files(train_path, mixing, order, labels_dic, nb_groups, nb_cl, nb_val) # Pickle order and files lists and mixing with open(str(nb_cl) + 'mixing.pickle', 'wb') as fp: cPickle.dump(mixing, fp) with open(str(nb_cl) + 'settings_resnet.pickle', 'wb') as fp: cPickle.dump(order, fp) cPickle.dump(files_valid, fp) cPickle.dump(files_train, fp) ### Start of the main algorithm ### for itera in range(nb_groups):
# Random mixing print("Mixing the classes and putting them in batches of classes...") np.random.seed(1993) order = np.arange(nb_groups * nb_cl) mixing = np.arange(nb_groups * nb_cl) np.random.shuffle(mixing) # Loading the labels labels_dic, label_names, validation_ground_truth = utils_data.parse_devkit_meta(devkit_path) # Or you can just do like this # define_class = ['apple', 'banana', 'cat', 'dog', 'elephant', 'forg'] # labels_dic = {k: v for v, k in enumerate(define_class)} # Preparing the files per group of classes print("Creating a validation set ...") files_train, files_valid = utils_data.prepare_files(train_path, mixing, order, labels_dic, nb_groups, nb_cl, nb_val) # Pickle order and files lists and mixing with open(str(nb_cl)+'mixing.pickle','wb') as fp: cPickle.dump(mixing,fp) with open(str(nb_cl)+'settings_resnet.pickle','wb') as fp: cPickle.dump(order,fp) cPickle.dump(files_valid,fp) cPickle.dump(files_train,fp) ### Start of the main algorithm ### for itera in range(nb_groups):