コード例 #1
0
from pathlib import Path
from utils_model import get_predictions

# Run the ResNet on the generated patches.
print("\n\n+++++ Running 4_test.py +++++")
print("\n----- Finding validation patch predictions -----")
# Validation patches.
get_predictions(patches_eval_folder=Path(
    "/home/ifsdata/vlg/jason/easy-self-supervised-training/data/voc_trainval_full/val"
),
                output_folder=Path("outputs").joinpath(
                    "resnet18_e5_va0.48108"),
                auto_select=False,
                batch_size=config.args.batch_size,
                checkpoints_folder=config.args.checkpoints_folder,
                classes=config.classes,
                device=config.device,
                eval_model=Path("checkpoints/resnet18_e5_va0.48108.pt"),
                num_classes=config.num_classes,
                num_layers=config.args.num_layers,
                num_workers=config.args.num_workers,
                path_mean=config.path_mean,
                path_std=config.path_std,
                pretrain=config.args.pretrain)

get_predictions(patches_eval_folder=Path(
    "/home/ifsdata/vlg/jason/easy-self-supervised-training/data/voc_trainval_full/val"
),
                output_folder=Path("outputs").joinpath(
                    "resnet18_e10_va0.55588"),
                auto_select=False,
コード例 #2
0
ファイル: 4_test.py プロジェクト: zsj0577/deepslide
# DeepSlide
# Jason Wei, Behnaz Abdollahi, Saeed Hassanpour

# Run the resnet on generated patches.

from utils_model import get_predictions, get_predictions

# validation patches
get_predictions(patches_eval_folder=config.patches_eval_val,
                auto_select=config.auto_select,
                eval_model=config.eval_model,
                checkpoints_folder=config.checkpoints_folder,
                output_folder=config.preds_val)

# test patches
get_predictions(patches_eval_folder=config.patches_eval_test,
                auto_select=config.auto_select,
                eval_model=config.eval_model,
                checkpoints_folder=config.checkpoints_folder,
                output_folder=config.preds_test)
コード例 #3
0
import config
from pathlib import Path
from utils_model import get_predictions

# Run the ResNet on the generated patches.
print("\n\n+++++ Running 4_test.py +++++")
print("\n----- Finding validation patch predictions -----")
# Validation patches.

get_predictions(
    patches_eval_folder=Path(
        "/home/brenta/scratch/data/imagenet_rotnet/train"),
    #patches_eval_folder=Path("/home/ifsdata/vlg/jason/easy-self-supervised-training/data/voc_trainval_full/train"),
    output_folder=Path("/home/brenta/scratch/jason/outputs/image_net/vanilla/"
                       ).joinpath("resnet18_e0_mb40000_va0.80428.pt"),
    auto_select=False,
    batch_size=config.args.batch_size,
    checkpoints_folder=config.args.checkpoints_folder,
    classes=config.classes,
    device=config.device,
    eval_model=Path(
        "/home/brenta/scratch/jason/checkpoints/image_net/vanilla/exp_10/resnet18_e0_mb40000_va0.80428.pt"
    ),
    num_classes=config.num_classes,
    num_layers=config.args.num_layers,
    num_workers=config.args.num_workers,
    path_mean=config.path_mean,
    path_std=config.path_std,
    pretrain=config.args.pretrain)

print("----- Finished finding validation patch predictions -----\n")
コード例 #4
0
ファイル: run_all.py プロジェクト: JosephDiPalma/deepslide
             num_epochs=config.args.num_epochs,
             train_folder=config.args.train_folder,
             weight_decay=config.args.weight_decay)
print("+++++ Finished running 3_train.py +++++\n\n")

# Run the ResNet on the generated patches.
print("\n\n+++++ Running 4_test.py +++++")
print("\n----- Finding validation patch predictions -----")
# Validation patches.
get_predictions(patches_eval_folder=config.args.patches_eval_val,
                output_folder=config.args.preds_val,
                auto_select=config.args.auto_select,
                batch_size=config.args.batch_size,
                checkpoints_folder=config.args.checkpoints_folder,
                classes=config.classes,
                device=config.device,
                eval_model=config.eval_model,
                num_classes=config.num_classes,
                num_layers=config.args.num_layers,
                num_workers=config.args.num_workers,
                path_mean=config.path_mean,
                path_std=config.path_std,
                pretrain=config.args.pretrain)
print("----- Finished finding validation patch predictions -----\n")
print("----- Finding test patch predictions -----")
# Test patches.
get_predictions(patches_eval_folder=config.args.patches_eval_test,
                output_folder=config.args.preds_test,
                auto_select=config.args.auto_select,
                batch_size=config.args.batch_size,
                checkpoints_folder=config.args.checkpoints_folder,
                classes=config.classes,