args.env_name = args.env_name + "_" + now.strftime("%Y-%m-%d%H:%M:%S") if args.use_wandb: wandb = initialize_wandb(args) writer = SummaryWriter(os.path.join(args.logdir, args.env_name)) pprint.pprint(vars(args)) sys.stdout.flush() print("Current date and time : ") print(now.strftime("%Y-%m-%d %H:%M:%S")) print(f"Holdout dir is {holdout_dir}") ############################################################################# # Load data from all the models all_archs, models_filter, models_lst = get_data_info(args, meta_data) all_data = load_data(feature_dir, meta_data, models_lst) if holdout_dir is not None: _, models_filter_holdout, models_lst_holdout = get_data_info( args, holdout_metadata) holdout_data = load_data(holdout_dir, holdout_metadata, models_lst_holdout) print("Dataset: ", args.dataset) print("Running experiments on archs: ", all_archs) ############################################################################# # Create splits partitions = [] for _ in range(nfolds): partitions.append( get_splits_random(models_filter, all_archs, args.test_split,
"densenet169", ] # models_filter = meta_data[meta_data.model_architecture.isin(all_archs)] models_filter = meta_data[meta_data.trigger_type.isin(trigger_type)] models_lst = models_filter.model_name.to_list() print("Running experiments on", all_archs) partitions = [] for _ in range(nfolds): partitions.append( get_spits(models_filter, all_archs, args.test_split, args.val_split) ) ############################################################################# # Load data from all the models all_data = load_data(feature_dir, meta_data, models_lst) ############################################################################# # Setup Cross-validation and model np.random.seed(0) auc_all = [] scores_all = {} # Trainer and model # specify loss function """ device = check_for_cuda() model = TrojNet() model.to(device) criterion = nn.CrossEntropyLoss() # specify optimizer