コード例 #1
0
def main(args=None, model=None) -> GenerativeQAModule:

    Path(args.output_dir).mkdir(exist_ok=True)

    # named_actors = []
    # args.actor_handles = named_actors
    # assert args.actor_handles == named_actors

    if model is None:
        model: GenerativeQAModule = GenerativeQAModule(args)

    dataset = Path(args.data_dir).name

    data_module = Seq2SeqDataModule(model.tokenizer, args)

    if (args.logger_name == "default" or args.fast_dev_run
            or str(args.output_dir).startswith("/tmp")
            or str(args.output_dir).startswith("/var")):
        training_logger = True  # don't pollute wandb logs unnecessarily
    elif args.logger_name == "wandb":
        from pytorch_lightning.loggers import WandbLogger
        project = os.environ.get("WANDB_PROJECT", dataset)
        training_logger = WandbLogger(name=model.output_dir.name,
                                      project=project)

    elif args.logger_name == "wandb_shared":
        from pytorch_lightning.loggers import WandbLogger
        training_logger = WandbLogger(name=model.output_dir.name,
                                      project=f"hf_{dataset}")

    elif args.logger_name == "tb-logs":
        from pytorch_lightning.loggers import TensorBoardLogger
        training_logger = TensorBoardLogger('tb_logs', name='my_model')

    es_callback = (get_early_stopping_callback(model.val_metric,
                                               args.early_stopping_patience)
                   if args.early_stopping_patience >= 0 else False)

    trainer: pl.Trainer = generic_train(
        model,
        args,
        data_module,
        logging_callback=Seq2SeqLoggingCallback(),
        checkpoint_callback=get_checkpoint_callback(args.output_dir,
                                                    model.val_metric),
        early_stopping_callback=es_callback,
        logger=training_logger,
        accelerator=CustomAccel() if args.gpus > 1 else None,
        profiler=pl.profiler.AdvancedProfiler() if args.profile else None,
    )
    pickle_save(model.hparams, model.output_dir / "hparams.pkl")

    if not args.do_predict:
        return model

    # test() without a model tests using the best checkpoint automatically
    trainer.test()
    return model
コード例 #2
0
def main(args=None, model=None) -> GenerativeQAModule:

    parser = argparse.ArgumentParser()
    parser = pl.Trainer.add_argparse_args(parser)
    parser = GenerativeQAModule.add_model_specific_args(parser, os.getcwd())
    parser = GenerativeQAModule.add_retriever_specific_args(parser)

    args = args or parser.parse_args()

    Path(args.output_dir).mkdir(exist_ok=True)
    if model is None:
        model: GenerativeQAModule = GenerativeQAModule(args)

    dataset = Path(args.data_dir).name
    if (args.logger_name == "default" or args.fast_dev_run
            or str(args.output_dir).startswith("/tmp")
            or str(args.output_dir).startswith("/var")):
        logger = True  # don't pollute wandb logs unnecessarily
    elif args.logger_name == "wandb":
        from pytorch_lightning.loggers import WandbLogger

        project = os.environ.get("WANDB_PROJECT", dataset)
        logger = WandbLogger(name=model.output_dir.name, project=project)

    elif args.logger_name == "wandb_shared":
        from pytorch_lightning.loggers import WandbLogger

        logger = WandbLogger(name=model.output_dir.name,
                             project=f"hf_{dataset}")

    es_callback = (get_early_stopping_callback(model.val_metric,
                                               args.early_stopping_patience)
                   if args.early_stopping_patience >= 0 else False)

    trainer: pl.Trainer = generic_train(
        model,
        args,
        logging_callback=Seq2SeqLoggingCallback(),
        checkpoint_callback=get_checkpoint_callback(args.output_dir,
                                                    model.val_metric),
        early_stopping_callback=es_callback,
        logger=logger,
        accelerator=CustomAccel() if args.gpus > 1 else None,
    )
    pickle_save(model.hparams, model.output_dir / "hparams.pkl")

    if not args.do_predict:
        return model

    # test() without a model tests using the best checkpoint automatically
    trainer.test()
    return model
コード例 #3
0
ファイル: finetune_rag.py プロジェクト: MaveriQ/transformers
    def __init__(self, hparams, **kwargs):
        # when loading from a pytorch lightning checkpoint, hparams are passed as dict
        if isinstance(hparams, dict):
            hparams = AttrDict(hparams)
        if hparams.model_type == "rag_sequence":
            self.model_class = RagSequenceForGeneration
        elif hparams.model_type == "rag_token":
            self.model_class = RagTokenForGeneration
        elif hparams.model_type == "bart":
            self.model_class = BartForConditionalGeneration
        else:
            self.model_class = T5ForConditionalGeneration
        self.is_rag_model = is_rag_model(hparams.model_type)

        config_class = RagConfig if self.is_rag_model else AutoConfig
        config = config_class.from_pretrained(hparams.model_name_or_path)

        # set retriever parameters
        config.index_name = hparams.index_name or config.index_name
        config.passages_path = hparams.passages_path or config.passages_path
        config.index_path = hparams.index_path or config.index_path
        config.use_dummy_dataset = hparams.use_dummy_dataset

        # set extra_model_params for generator configs and load_model
        extra_model_params = ("encoder_layerdrop", "decoder_layerdrop",
                              "attention_dropout", "dropout")
        if self.is_rag_model:
            if hparams.prefix is not None:
                config.generator.prefix = hparams.prefix
            config.label_smoothing = hparams.label_smoothing
            hparams, config.generator = set_extra_model_params(
                extra_model_params, hparams, config.generator)
            if hparams.distributed_retriever == "ray":
                # The Ray retriever needs the handles to the retriever actors.
                retriever = RagRayDistributedRetriever.from_pretrained(
                    hparams.model_name_or_path,
                    hparams.actor_handles,
                    config=config)

                if hparams.end2end:
                    ctx_encoder_tokenizer = DPRContextEncoderTokenizerFast.from_pretrained(
                        "facebook/dpr-ctx_encoder-multiset-base")
                    retriever.set_ctx_encoder_tokenizer(ctx_encoder_tokenizer)
            else:
                logger.info(
                    "please use RAY as the distributed retrieval method")

            model = self.model_class.from_pretrained(
                hparams.model_name_or_path, config=config, retriever=retriever)
            if hparams.end2end:
                ctx_encoder = DPRContextEncoder.from_pretrained(
                    hparams.context_encoder_name)
                model.set_context_encoder_for_training(ctx_encoder)
            prefix = config.question_encoder.prefix
        else:
            if hparams.prefix is not None:
                config.prefix = hparams.prefix
            hparams, config = set_extra_model_params(extra_model_params,
                                                     hparams, config)
            model = self.model_class.from_pretrained(
                hparams.model_name_or_path, config=config)
            prefix = config.prefix

        tokenizer = (RagTokenizer.from_pretrained(hparams.model_name_or_path)
                     if self.is_rag_model else AutoTokenizer.from_pretrained(
                         hparams.model_name_or_path))

        self.config_dpr = DPRConfig.from_pretrained(
            hparams.context_encoder_name)
        self.custom_config = hparams
        self.context_tokenizer = DPRContextEncoderTokenizerFast.from_pretrained(
            hparams.context_encoder_name)

        super().__init__(hparams,
                         config=config,
                         tokenizer=tokenizer,
                         model=model)

        save_git_info(self.hparams.output_dir)
        self.output_dir = Path(self.hparams.output_dir)
        self.dpr_ctx_check_dir = str(Path(
            self.hparams.output_dir)) + "/dpr_ctx_checkpoint"
        self.metrics_save_path = Path(self.output_dir) / "metrics.json"
        self.hparams_save_path = Path(self.output_dir) / "hparams.pkl"
        pickle_save(self.hparams, self.hparams_save_path)
        self.step_count = 0
        self.metrics = defaultdict(list)

        self.dataset_kwargs: dict = dict(
            data_dir=self.hparams.data_dir,
            max_source_length=self.hparams.max_source_length,
            prefix=prefix or "",
        )
        n_observations_per_split = {
            "train": self.hparams.n_train,
            "val": self.hparams.n_val,
            "test": self.hparams.n_test,
        }
        self.n_obs = {
            k: v if v >= 0 else None
            for k, v in n_observations_per_split.items()
        }
        self.target_lens = {
            "train": self.hparams.max_target_length,
            "val": self.hparams.val_max_target_length,
            "test": self.hparams.test_max_target_length,
        }
        assert self.target_lens["train"] <= self.target_lens[
            "val"], f"target_lens: {self.target_lens}"
        assert self.target_lens["train"] <= self.target_lens[
            "test"], f"target_lens: {self.target_lens}"

        self.hparams.git_sha = get_git_info()["repo_sha"]
        self.num_workers = hparams.num_workers
        self.distributed_port = self.hparams.distributed_port

        # For single GPU training, init_ddp_connection is not called.
        # So we need to initialize the retrievers here.
        if hparams.gpus <= 1:
            if hparams.distributed_retriever == "ray":
                self.model.retriever.init_retrieval()
            else:
                logger.info(
                    "please use RAY as the distributed retrieval method")

        self.distributed_retriever = hparams.distributed_retriever
コード例 #4
0
ファイル: finetune_rag.py プロジェクト: MaveriQ/transformers
def main(args=None, model=None) -> GenerativeQAModule:
    parser = argparse.ArgumentParser()
    parser = pl.Trainer.add_argparse_args(parser)
    parser = GenerativeQAModule.add_model_specific_args(parser, os.getcwd())
    parser = GenerativeQAModule.add_retriever_specific_args(parser)
    args = args or parser.parse_args()

    Path(args.output_dir).mkdir(exist_ok=True)
    Path(args.output_dir + "/dpr_ctx_checkpoint").mkdir(
        exist_ok=True)  # save dpr_context encoder seprately for the future use
    print(args.shard_dir)
    if os.path.exists(
            args.shard_dir
    ):  # we do not need previous kb shards used in dataset re-conding and re-indexing
        shutil.rmtree(args.shard_dir)
    Path(args.shard_dir).mkdir(exist_ok=True)

    if os.path.exists(
            args.cache_dir
    ):  # we do not need previous cache files used in dataset re-conding and re-indexing
        shutil.rmtree(args.cache_dir)
    Path(args.cache_dir).mkdir(exist_ok=True)

    named_actors = []
    if args.distributed_retriever == "ray" and args.gpus > 1:
        if not is_ray_available():
            raise RuntimeError("Please install Ray to use the Ray "
                               "distributed retriever.")
        # Connect to an existing Ray cluster.
        try:
            ray.init(address=args.ray_address)
        except (ConnectionError, ValueError):
            logger.warning(
                "Connection to Ray cluster failed. Make sure a Ray"
                "cluster is running by either using Ray's cluster "
                "launcher (`ray up`) or by manually starting Ray on "
                "each node via `ray start --head` for the head node "
                "and `ray start --address='<ip address>:6379'` for "
                "additional nodes. See "
                "https://docs.ray.io/en/master/cluster/index.html "
                "for more info.")
            raise

        # Create Ray actors only for rank 0.
        if ("LOCAL_RANK" not in os.environ or os.environ["LOCAL_RANK"]
                == 0) and ("NODE_RANK" not in os.environ
                           or os.environ["NODE_RANK"] == 0):
            remote_cls = ray.remote(RayRetriever)
            named_actors = [
                remote_cls.options(
                    name="retrieval_worker_{}".format(i)).remote()
                for i in range(args.num_retrieval_workers)
            ]
        else:
            logger.info(
                "Getting named actors for NODE_RANK {}, LOCAL_RANK {}".format(
                    os.environ["NODE_RANK"], os.environ["LOCAL_RANK"]))
            named_actors = [
                ray.get_actor("retrieval_worker_{}".format(i))
                for i in range(args.num_retrieval_workers)
            ]
    args.actor_handles = named_actors
    assert args.actor_handles == named_actors

    if model is None:
        model: GenerativeQAModule = GenerativeQAModule(args)

    dataset = Path(args.data_dir).name
    if (args.logger_name == "default" or args.fast_dev_run
            or str(args.output_dir).startswith("/tmp")
            or str(args.output_dir).startswith("/var")):
        training_logger = True  # don't pollute wandb logs unnecessarily
    elif args.logger_name == "wandb":
        from pytorch_lightning.loggers import WandbLogger

        project = os.environ.get("WANDB_PROJECT", dataset)
        training_logger = WandbLogger(name=model.output_dir.name,
                                      project=project)

    elif args.logger_name == "wandb_shared":
        from pytorch_lightning.loggers import WandbLogger

        training_logger = WandbLogger(name=model.output_dir.name,
                                      project=f"hf_{dataset}")

    es_callback = (get_early_stopping_callback(model.val_metric,
                                               args.early_stopping_patience)
                   if args.early_stopping_patience >= 0 else False)

    trainer: pl.Trainer = generic_train(
        model,
        args,
        logging_callback=Seq2SeqLoggingCallback(),
        checkpoint_callback=get_checkpoint_callback(args.output_dir,
                                                    model.val_metric),
        early_stopping_callback=es_callback,
        logger=training_logger,
        profiler=pl.profiler.AdvancedProfiler() if args.profile else None,
    )

    pickle_save(model.hparams, model.output_dir / "hparams.pkl")
    if not args.do_predict:
        return model

    # test() without a model tests using the best checkpoint automatically
    trainer.test()
    return model
コード例 #5
0
    def __init__(self, hparams, **kwargs):

        if isinstance(hparams, dict):
            hparams = AttrDict(hparams)

        if hparams.model_type == "bart":
            self.model_class = BartForConditionalGeneration
        else:
            self.model_class = T5ForConditionalGeneration

        config_class = AutoConfig
        config = config_class.from_pretrained(hparams.model_name_or_path)

        # set extra_model_params for generator configs and load_model
        extra_model_params = ("encoder_layerdrop", "decoder_layerdrop",
                              "attention_dropout", "dropout")

        if hparams.prefix is not None:
            config.prefix = hparams.prefix
        hparams, config = set_extra_model_params(extra_model_params, hparams,
                                                 config)

        model = self.model_class.from_pretrained(hparams.model_name_or_path,
                                                 config=config)
        prefix = config.prefix

        tokenizer = (AutoTokenizer.from_pretrained(hparams.model_name_or_path))

        super().__init__(hparams,
                         config=config,
                         tokenizer=tokenizer,
                         model=model)

        save_git_info(self.hparams.output_dir)
        self.output_dir = Path(self.hparams.output_dir)
        self.metrics_save_path = Path(self.output_dir) / "metrics.json"
        self.hparams_save_path = Path(self.output_dir) / "hparams.pkl"
        pickle_save(self.hparams, self.hparams_save_path)
        self.step_count = 0
        self.metrics = defaultdict(list)

        self.dataset_kwargs: dict = dict(
            data_dir=self.hparams.data_dir,
            max_source_length=self.hparams.max_source_length,
            prefix=prefix or "",
        )
        n_observations_per_split = {
            "train": self.hparams.n_train,
            "val": self.hparams.n_val,
            "test": self.hparams.n_test,
        }
        self.n_obs = {
            k: v if v >= 0 else None
            for k, v in n_observations_per_split.items()
        }

        self.target_lens = {
            "train": self.hparams.max_target_length,
            "val": self.hparams.val_max_target_length,
            "test": self.hparams.test_max_target_length,
        }

        assert self.target_lens["train"] <= self.target_lens[
            "val"], f"target_lens: {self.target_lens}"
        assert self.target_lens["train"] <= self.target_lens[
            "test"], f"target_lens: {self.target_lens}"

        self.hparams.git_sha = get_git_info()["repo_sha"]
        self.num_workers = hparams.num_workers
        self.distributed_port = self.hparams.distributed_port
コード例 #6
0
    def __init__(self, hparams, **kwargs):
        # when loading from a pytorch lightning checkpoint, hparams are passed as dict
        if isinstance(hparams, dict):
            hparams = AttrDict(hparams)
        if hparams.model_type == "rag_sequence":
            self.model_class = RagSequenceForGeneration
        elif hparams.model_type == "rag_token":
            self.model_class = RagTokenForGeneration
        elif hparams.model_type == "bart":
            self.model_class = BartForConditionalGeneration
        else:
            self.model_class = T5ForConditionalGeneration
        self.is_rag_model = is_rag_model(hparams.model_type)

        config_class = RagConfig if self.is_rag_model else AutoConfig
        config = config_class.from_pretrained(hparams.model_name_or_path)

        # set retriever parameters
        config.index_name = hparams.index_name or config.index_name
        config.passages_path = hparams.passages_path or config.passages_path
        config.index_path = hparams.index_path or config.index_path
        config.use_dummy_dataset = hparams.use_dummy_dataset
        config.n_docs = 4
        config.n_docs_splits = 4
        config.max_combined_length = 500
        config.n_words_to_src = 40  # using 40 tokens to add to src
        config.skip_ec = False
        config.bart_base_qe = True  # using bart encoder as qe
        config.do_deduplication = True

        # set extra_model_params for generator configs and load_model
        extra_model_params = ("encoder_layerdrop", "decoder_layerdrop",
                              "attention_dropout", "dropout")
        if self.is_rag_model:
            if hparams.prefix is not None:
                config.generator.prefix = hparams.prefix
            config.label_smoothing = hparams.label_smoothing
            hparams, config.generator = set_extra_model_params(
                extra_model_params, hparams, config.generator)
            if hparams.distributed_retriever == "pytorch":
                retriever = RagPyTorchDistributedRetriever.from_pretrained(
                    hparams.model_name_or_path, config=config)
            elif hparams.distributed_retriever == "ray":
                # The Ray retriever needs the handles to the retriever actors.
                retriever = RagRayDistributedRetriever.from_pretrained(
                    hparams.model_name_or_path,
                    hparams.actor_handles,
                    config=config)
            model = self.model_class.from_pretrained(
                hparams.model_name_or_path, config=config, retriever=retriever)
            prefix = config.question_encoder.prefix
        else:
            if hparams.prefix is not None:
                config.prefix = hparams.prefix
            hparams, config = set_extra_model_params(extra_model_params,
                                                     hparams, config)
            model = self.model_class.from_pretrained(
                hparams.model_name_or_path, config=config)
            prefix = config.prefix

        tokenizer = (RagTokenizer.from_pretrained(hparams.model_name_or_path)
                     if self.is_rag_model else AutoTokenizer.from_pretrained(
                         hparams.model_name_or_path))

        # if the bart base qe wants to be used
        if config.bart_base_qe:
            #print("yuh")
            # load bbforrag
            bart_base_model = BartForConditionalGeneration.from_pretrained(
                "facebook/bart-base").cuda()
            model.question_encoder = bart_base_model.model.encoder
            #sys.exit()

        super().__init__(hparams,
                         config=config,
                         tokenizer=tokenizer,
                         model=model)

        save_git_info(self.hparams.output_dir)
        self.output_dir = Path(self.hparams.output_dir)
        self.metrics_save_path = Path(self.output_dir) / "metrics.json"
        self.hparams_save_path = Path(self.output_dir) / "hparams.pkl"
        pickle_save(self.hparams, self.hparams_save_path)
        self.step_count = 0
        self.metrics = defaultdict(list)

        self.dataset_kwargs: dict = dict(
            data_dir=self.hparams.data_dir,
            max_source_length=self.hparams.max_source_length,
            prefix=prefix or "",
        )
        n_observations_per_split = {
            "train": self.hparams.n_train,
            "val": self.hparams.n_val,
            "test": self.hparams.n_test,
        }
        self.n_obs = {
            k: v if v >= 0 else None
            for k, v in n_observations_per_split.items()
        }

        self.target_lens = {
            "train": self.hparams.max_target_length,
            "val": self.hparams.val_max_target_length,
            "test": self.hparams.test_max_target_length,
        }
        assert self.target_lens["train"] <= self.target_lens[
            "val"], f"target_lens: {self.target_lens}"
        assert self.target_lens["train"] <= self.target_lens[
            "test"], f"target_lens: {self.target_lens}"

        self.hparams.git_sha = get_git_info()["repo_sha"]
        self.num_workers = hparams.num_workers
        self.distributed_port = self.hparams.distributed_port

        # For single GPU training, init_ddp_connection is not called.
        # So we need to initialize the retrievers here.
        if hparams.gpus <= 1:
            if hparams.distributed_retriever == "ray":
                self.model.retriever.init_retrieval()
            elif hparams.distributed_retriever == "pytorch":
                self.model.retriever.init_retrieval(self.distributed_port)

        self.distributed_retriever = hparams.distributed_retriever
        self.source_tokenizer = (self.tokenizer.question_encoder if isinstance(
            self.tokenizer, RagTokenizer) else self.tokenizer)
コード例 #7
0
    def __init__(self, hparams, **kwargs):
        # when loading from a pytorch lightning checkpoint, hparams are passed as dict
        if isinstance(hparams, dict):
            hparams = AttrDict(hparams)
        if hparams.model_type == "rag_sequence":
            self.model_class = RagSequenceForGeneration
        elif hparams.model_type == "rag_token":
            self.model_class = RagTokenForGeneration
        elif hparams.model_type == "bart":
            self.model_class = BartForConditionalGeneration
        else:
            self.model_class = T5ForConditionalGeneration
        self.is_rag_model = is_rag_model(hparams.model_type)

        config_class = RagConfig if self.is_rag_model else AutoConfig
        config = config_class.from_pretrained(hparams.model_name_or_path)

        # set retriever parameters
        config.n_docs = hparams.n_docs
        config.do_marginalize = hparams.do_marginalize or config.do_marginalize
        config.scoring_func = hparams.scoring_func or config.scoring_func
        logger.info("Using scoring function - {}".format(config.scoring_func))
        config.segmentation = hparams.segmentation or config.segmentation
        config.max_combined_length = hparams.max_combined_length or config.max_combined_length
        config.max_source_length = hparams.max_source_length or config.max_source_length
        config.index_name = hparams.index_name or config.index_name
        config.passages_path = hparams.passages_path or config.passages_path
        config.index_path = hparams.index_path or config.index_path
        config.use_dummy_dataset = hparams.use_dummy_dataset

        if hparams.bm25:
            # hparams.bm25 = load_bm25_results(hparams.bm25)
            bm25 = load_bm25(hparams.bm25)
            config.bm25 = hparams.bm25
        else:
            bm25 = None

        # set extra_model_params for generator configs and load_model
        extra_model_params = ("encoder_layerdrop", "decoder_layerdrop",
                              "attention_dropout", "dropout")
        if self.is_rag_model:
            if hparams.prefix is not None:
                config.generator.prefix = hparams.prefix
            config.label_smoothing = hparams.label_smoothing
            hparams, config.generator = set_extra_model_params(
                extra_model_params, hparams, config.generator)
            if hparams.distributed_retriever == "pytorch":
                # pdb.set_trace()
                retriever = RagPyTorchDistributedRetriever.from_pretrained(
                    hparams.model_name_or_path, config=config)
            elif hparams.distributed_retriever == "ray":
                # The Ray retriever needs the handles to the retriever actors.
                retriever = RagRayDistributedRetriever.from_pretrained(
                    hparams.model_name_or_path,
                    hparams.actor_handles,
                    config=config)
            model = self.model_class.from_pretrained(
                hparams.model_name_or_path,
                config=config,
                retriever=retriever,
                bm25=bm25)
            prefix = config.question_encoder.prefix
            model.bm25 = bm25
        else:
            if hparams.prefix is not None:
                config.prefix = hparams.prefix
            hparams, config = set_extra_model_params(extra_model_params,
                                                     hparams, config)
            model = self.model_class.from_pretrained(
                hparams.model_name_or_path, config=config)
            prefix = config.prefix

        tokenizer = (RagTokenizer.from_pretrained(hparams.model_name_or_path)
                     if self.is_rag_model else AutoTokenizer.from_pretrained(
                         hparams.model_name_or_path))

        super().__init__(hparams,
                         config=config,
                         tokenizer=tokenizer,
                         model=model)

        save_git_info(self.hparams.output_dir)
        self.output_dir = Path(self.hparams.output_dir)
        self.metrics_save_path = Path(self.output_dir) / "metrics.json"
        self.hparams_save_path = Path(self.output_dir) / "hparams.pkl"
        pickle_save(self.hparams, self.hparams_save_path)
        self.step_count = 0
        self.metrics = defaultdict(list)

        self.dataset_kwargs: dict = dict(
            data_dir=self.hparams.data_dir,
            max_source_length=self.hparams.max_source_length,
            prefix=prefix or "",
        )
        n_observations_per_split = {
            "train": self.hparams.n_train,
            "val": self.hparams.n_val,
            "test": self.hparams.n_test,
        }
        self.n_obs = {
            k: v if v >= 0 else None
            for k, v in n_observations_per_split.items()
        }

        self.target_lens = {
            "train": self.hparams.max_target_length,
            "val": self.hparams.val_max_target_length,
            "test": self.hparams.test_max_target_length,
        }
        assert self.target_lens["train"] <= self.target_lens[
            "val"], f"target_lens: {self.target_lens}"
        assert self.target_lens["train"] <= self.target_lens[
            "test"], f"target_lens: {self.target_lens}"

        self.hparams.git_sha = get_git_info()["repo_sha"]
        self.num_workers = hparams.num_workers
        self.distributed_port = self.hparams.distributed_port

        # For single GPU training, init_ddp_connection is not called.
        # So we need to initialize the retrievers here.
        if hparams.gpus <= 1:
            if hparams.distributed_retriever == "ray":
                self.model.retriever.init_retrieval()
            elif hparams.distributed_retriever == "pytorch":
                self.model.retriever.init_retrieval(self.distributed_port)

        self.distributed_retriever = hparams.distributed_retriever