コード例 #1
0
def crop_zoom_from_mem(mem, lrt, Z2, Y2, X2, additive_pad=0.1):
    # mem is B x C x Z x Y x X
    # lrt is B x 19

    B, C, Z, Y, X = list(mem.shape)
    B2, E = list(lrt.shape)

    assert (E == 19)
    assert (B == B2)

    # for each voxel in the zoom grid, i want to
    # sample a voxel from the mem

    # this puts each C-dim pixel in the image
    # along a ray in the zoomed voxelgrid

    xyz_zoom = utils_basic.gridcloud3D(B, Z2, Y2, X2, norm=False)
    # these represent the zoom grid coordinates
    # we need to convert these to mem coordinates
    xyz_ref = Zoom2Ref(xyz_zoom, lrt, Z2, Y2, X2, additive_pad=additive_pad)
    xyz_mem = Ref2Mem(xyz_ref, Z, Y, X)

    zoom = utils_samp.sample3D(mem, xyz_mem, Z2, Y2, X2)
    zoom = torch.reshape(zoom, [B, C, Z2, Y2, X2])
    return zoom
コード例 #2
0
def apply_pixX_T_memR_to_voxR(pix_T_camX, camX_T_camR, voxR, D, H, W):
    # mats are B x 4 x 4
    # voxR is B x C x Z x Y x X
    # H, W, D indicates how big to make the output
    # returns B x C x D x H x W

    B, C, Z, Y, X = list(voxR.shape)
    z_near = hyp.ZMIN
    z_far = hyp.ZMAX

    grid_z = torch.linspace(z_near,
                            z_far,
                            steps=D,
                            dtype=torch.float32,
                            device=torch.device('cuda'))
    # grid_z = torch.exp(torch.linspace(np.log(z_near), np.log(z_far), steps=D, dtype=torch.float32, device=torch.device('cuda')))
    grid_z = torch.reshape(grid_z, [1, 1, D, 1, 1])
    grid_z = grid_z.repeat([B, 1, 1, H, W])
    grid_z = torch.reshape(grid_z, [B * D, 1, H, W])

    pix_T_camX__ = torch.unsqueeze(pix_T_camX, axis=1).repeat([1, D, 1, 1])
    pix_T_camX = torch.reshape(pix_T_camX__, [B * D, 4, 4])
    xyz_camX = utils_geom.depth2pointcloud(grid_z, pix_T_camX)

    camR_T_camX = utils_geom.safe_inverse(camX_T_camR)
    camR_T_camX_ = torch.unsqueeze(camR_T_camX, dim=1).repeat([1, D, 1, 1])
    camR_T_camX = torch.reshape(camR_T_camX_, [B * D, 4, 4])

    mem_T_cam = get_mem_T_ref(B * D, Z, Y, X)
    memR_T_camX = matmul2(mem_T_cam, camR_T_camX)

    xyz_memR = utils_geom.apply_4x4(memR_T_camX, xyz_camX)
    xyz_memR = torch.reshape(xyz_memR, [B, D * H * W, 3])

    samp = utils_samp.sample3D(voxR, xyz_memR, D, H, W)
    # samp is B x H x W x D x C
    return samp
コード例 #3
0
def assemble(bkg_feat0, obj_feat0, origin_T_camRs, camRs_T_zoom):
    # let's first assemble the seq of background tensors
    # this should effectively CREATE egomotion
    # i fully expect we can do this all in one shot

    # note it makes sense to create egomotion here, because
    # we want to predict each view

    B, C, Z, Y, X = list(bkg_feat0.shape)
    B2, C2, Z2, Y2, X2 = list(obj_feat0.shape)
    assert (B == B2)
    assert (C == C2)

    B, S, _, _ = list(origin_T_camRs.shape)
    # ok, we have everything we need
    # for each timestep, we want to warp the bkg to this timestep

    # utils for packing/unpacking along seq dim
    __p = lambda x: pack_seqdim(x, B)
    __u = lambda x: unpack_seqdim(x, B)

    # we in fact have utils for this already
    cam0s_T_camRs = utils_geom.get_camM_T_camXs(origin_T_camRs, ind=0)
    camRs_T_cam0s = __u(utils_geom.safe_inverse(__p(cam0s_T_camRs)))

    bkg_feat0s = bkg_feat0.unsqueeze(1).repeat(1, S, 1, 1, 1, 1)
    bkg_featRs = apply_4x4s_to_voxs(camRs_T_cam0s, bkg_feat0s)

    # now for the objects

    # we want to sample for each location in the bird grid
    xyz_mems_ = utils_basic.gridcloud3D(B * S, Z, Y, X, norm=False)
    # this is B*S x Z*Y*X x 3
    xyz_camRs_ = Mem2Ref(xyz_mems_, Z, Y, X)
    camRs_T_zoom_ = __p(camRs_T_zoom)
    zoom_T_camRs_ = camRs_T_zoom_.inverse(
    )  # note this is not a rigid transform
    xyz_zooms_ = utils_geom.apply_4x4(zoom_T_camRs_, xyz_camRs_)

    # we will do the whole traj at once (per obj)
    # note we just have one feat for the whole traj, so we tile up
    obj_feats = obj_feat0.unsqueeze(1).repeat(1, S, 1, 1, 1, 1)
    obj_feats_ = __p(obj_feats)
    # this is B*S x Z x Y x X x C

    # to sample, we need feats_ in ZYX order
    obj_featRs_ = utils_samp.sample3D(obj_feats_, xyz_zooms_, Z, Y, X)
    obj_featRs = __u(obj_featRs_)

    # overweigh objects, so that we essentially overwrite
    # featRs = 0.05*bkg_featRs + 0.95*obj_featRs

    # overwrite the bkg at the object
    obj_mask = (bkg_featRs > 0).float()
    featRs = obj_featRs + (1.0 - obj_mask) * bkg_featRs

    # note the normalization (next) will restore magnitudes for the bkg

    # # featRs = bkg_featRs
    # featRs = obj_featRs

    # l2 normalize on chans
    featRs = l2_normalize(featRs, dim=2)

    validRs = 1.0 - (featRs == 0).all(dim=2, keepdim=True).float().cuda()

    return featRs, validRs, bkg_featRs, obj_featRs