コード例 #1
0
def cerate_test_enviroment():
    TEST_MAPS = dict()
    TEST_POSITIONS = dict()
    for i in range(10):
        TEST_MAPS[i] = mapaAleatorio(N_STATIONS, N_STATES)

    for i in range(10):
        positions_list = random.sample(range(1, N_STATIONS), N_CARS+1)
        positions = list()
        for station in positions_list:
            positions.append("estacion_" + str(station))
        TEST_POSITIONS[i] = positions
    save_obj(TEST_POSITIONS, "TEST_POSITIONS")
    save_obj(TEST_MAPS, "TEST_MAPS")
コード例 #2
0
                        position = POSITIONS[id_car]
                        capacity = random.randint(5,20) #TO DO: each car have their on capcity
                        car = Car( id_car, position, capacity )
                        FLEET.insertCar(car)

                    FLEET.update_carsPosition()          #Save car positions in FLEET.positions
                    MAP.update_available_stations(FLEET) #Remove car positio and car subsytem from available_stations
                    FLEET.assignArea(MAP)                #Assign subsystem to each car
                    FLEET.solve_subsystems(MAP, SOLUCIONES, N_STATIONS, N_STATES)

                    ts = time.time()
                    MIN_COST, FLEET_MIN  = subsystem_distribution_gradientOptimization(FLEET, MAP, SOLUCIONES, N_STATIONS, N_STATES, C, E)
                    time_f = time.time() - ts

                    RESULT_GRADIENT[name_config] = dict()
                    RESULT_GRADIENT[name_config]["FLEET"]     = FLEET_MIN
                    RESULT_GRADIENT[name_config]["POSITIONS"] = POSITIONS
                    RESULT_GRADIENT[name_config]["TIME"]      = time_f
                    RESULT_GRADIENT[name_config]["SCORE"]     = MIN_COST
                    save_obj(RESULT_GRADIENT, name)

        save_obj(RESULT_GRADIENT, name)
        print("MODELO GUARDADO")







コード例 #3
0
		name = "MAP" + i + "_POSITION" +j
		try:
			print(RESULTS_GENETIC[name])
		except Exception as e:
			POSITIONS = TEST_POSITIONS[j]
			print("\n\tExecuting POSITIONS: ", POSITIONS)
			ts = time.time()
			POPULATION_X, solution = utils_genetic.solve_genetic_algorithm( N, PC, PM, MAX_ITERATIONS, MAP, N_STATIONS, AREA_SIZE, MAX_COBERTURE, N_CARS, N_STATES, SOLUCIONES, POSITIONS )
			time = time.time() - ts

			RESULTS_GENETIC[name] = dict()
			RESULTS_GENETIC[name]["FLEET"]     = POPULATION_X["FLEET"]
			RESULTS_GENETIC[name]["POSITIONS"] = POSITIONS
			RESULTS_GENETIC[name]["TIME"]      = time
			RESULTS_GENETIC[name]["SCORE"]     = POPULATION_X["FLEET"].accumulated_cost
			save_obj(RESULTS_GENETIC, "RESULTS_GENETIC")



"""
RESULT_ITERATIVE = dict()
for i in TEST_MAPS.keys():
	MAP = TEST_MAPS[i]
	print("Executing MAP: ",i)
	for j in TEST_POSITIONS.keys():
		POSITIONS = TEST_POSITIONS[j]
		print("\n\tExecuting POSITIONS: ", POSITIONS)
		ts = time.time()
		subsytem_distribution_iterativeOptimization(N_ITERATION,FLEET, MAP, SOLUCIONES)
		time = time.time() - ts
		name = "MAP" + i + "_POSITION" +j
コード例 #4
0
                FLEET = Fleet(AREA_SIZE, MAX_COBERTURE, N_STATIONS)
                # We assign a random station for each car

                for j in range(N_CARS):
                    id_car = j
                    position = POSITIONS[id_car]
                    capacity = random.randint(
                        5, 20)  #TO DO: each car have their on capcity
                    car = Car(id_car, position, capacity)
                    FLEET.insertCar(car)

                FLEET.update_carsPosition(
                )  #Save car positions in FLEET.positions
                MAP.update_available_stations(
                    FLEET
                )  #Remove car positio and car subsytem from available_stations
                FLEET.assignArea(MAP)  #Assign subsystem to each car
                FLEET.solve_subsystems(MAP, SOLUCIONES, N_STATIONS, N_STATES)

                ts = time.time()
                MIN_COST, FLEET_MIN = subsytem_distribution_iterativeOptimization(
                    N_ITERATION, FLEET, MAP, SOLUCIONES, N_STATIONS, N_STATES)
                time_f = time.time() - ts

                RESULT_ITERATIVE[name] = dict()
                RESULT_ITERATIVE[name]["FLEET"] = FLEET_MIN
                RESULT_ITERATIVE[name]["POSITIONS"] = POSITIONS
                RESULT_ITERATIVE[name]["TIME"] = time_f
                RESULT_ITERATIVE[name]["SCORE"] = MIN_COST
                save_obj(RESULT_ITERATIVE, name)
コード例 #5
0
            if SCORES[estado][area]["gradient_model"][
                    "min_time"] > execution_time:
                SCORES[estado][area]["gradient_model"][
                    "min_time"] = execution_time

            if SCORES[estado][area]["gradient_model"][
                    "max_time"] < execution_time:
                SCORES[estado][area]["gradient_model"][
                    "max_time"] = execution_time
            finalSOLUCIONES = countSOLUCIONES(SOLUCIONES)
            print(
                "---------------- Se ahn agregado {}  soluciones NUEVAS---------------"
                .format(startSOLUCIONES - finalSOLUCIONES))

utils_solver.save_obj(SCORES, 'SCORES_optimization')
"""
for estado in tqdm(n_estados, ascii= True, desc= "ITERATION TEST"):
    for area in n_subsystems:
        SOLUCIONES = dict()
        #We are going to delete the stations that are over the 7 decil.
        MAX_COBERTURE = round(estado*.7)

        for iter in range(SECUENTIAL_ITERATIONS):
            #The FLEET.position (position of each car) and the System must be constant for the optimization of S
            #but they have to change for each iter in SECUENTIAL_ITERATIONS.

            MAP = Map(N_STATIONS, N_STATES) #Always the same size.
            FLEET = Fleet(area, MAX_COBERTURE)
            MAP.update_available_stations(FLEET) #Remove car positio and car subsytem from available_stations