def encode_dataset(model_path, min_std=0.0): VAE = VariationalAutoencoder( dim_x=28 * 28, dim_z=50) #Should be consistent with model being loaded with VAE.session: VAE.saver.restore(VAE.session, VAE_model_path) enc_x_lab_mean, enc_x_lab_var = VAE.encode(x_lab) enc_x_ulab_mean, enc_x_ulab_var = VAE.encode(x_ulab) enc_x_valid_mean, enc_x_valid_var = VAE.encode(x_valid) enc_x_test_mean, enc_x_test_var = VAE.encode(x_test) id_x_keep = np.std(enc_x_ulab_mean, axis=0) > min_std print(id_x_keep) # enc_x_lab_mean, enc_x_lab_var = enc_x_lab_mean[ :, id_x_keep ], enc_x_lab_var[ :, id_x_keep ] # enc_x_ulab_mean, enc_x_ulab_var = enc_x_ulab_mean[ :, id_x_keep ], enc_x_ulab_var[ :, id_x_keep ] # enc_x_valid_mean, enc_x_valid_var = enc_x_valid_mean[ :, id_x_keep ], enc_x_valid_var[ :, id_x_keep ] # enc_x_test_mean, enc_x_test_var = enc_x_test_mean[ :, id_x_keep ], enc_x_test_var[ :, id_x_keep ] # data_lab = np.hstack( [ enc_x_lab_mean, enc_x_lab_var ] ) # data_ulab = np.hstack( [ enc_x_ulab_mean, enc_x_ulab_var ] ) # data_valid = np.hstack( [enc_x_valid_mean, enc_x_valid_var] ) # data_test = np.hstack( [enc_x_test_mean, enc_x_test_var] ) # print(data_lab.shape) data_lab = np.hstack([enc_x_lab_mean, enc_x_lab_var]) data_ulab = np.hstack([enc_x_ulab_mean, enc_x_ulab_var]) data_valid = np.hstack([enc_x_valid_mean, enc_x_valid_var]) data_test = np.hstack([enc_x_test_mean, enc_x_test_var]) print(data_lab.shape) return data_lab, data_ulab, data_valid, data_test
def encode_dataset(model_path, x_lab, x_ulab, x_valid, x_test, min_std=0.0): dim_x = x_lab.shape[1] VAE = VariationalAutoencoder( dim_x=dim_x, dim_z=50) #Should be consistent with model being loaded with VAE.session: VAE.saver.restore(VAE.session, model_path) enc_x_lab_mean, enc_x_lab_var = VAE.encode(x_lab) enc_x_ulab_mean, enc_x_ulab_var = VAE.encode(x_ulab) enc_x_valid_mean, enc_x_valid_var = VAE.encode(x_valid) enc_x_test_mean, enc_x_test_var = VAE.encode(x_test) id_x_keep = np.std(enc_x_ulab_mean, axis=0) > min_std enc_x_lab_mean, enc_x_lab_var = enc_x_lab_mean[:, id_x_keep], enc_x_lab_var[:, id_x_keep] enc_x_ulab_mean, enc_x_ulab_var = enc_x_ulab_mean[:, id_x_keep], enc_x_ulab_var[:, id_x_keep] enc_x_valid_mean, enc_x_valid_var = enc_x_valid_mean[:, id_x_keep], enc_x_valid_var[:, id_x_keep] enc_x_test_mean, enc_x_test_var = enc_x_test_mean[:, id_x_keep], enc_x_test_var[:, id_x_keep] data_lab = np.hstack([enc_x_lab_mean, enc_x_lab_var]) data_ulab = np.hstack([enc_x_ulab_mean, enc_x_ulab_var]) data_valid = np.hstack([enc_x_valid_mean, enc_x_valid_var]) data_test = np.hstack([enc_x_test_mean, enc_x_test_var]) return data_lab, data_ulab, data_valid, data_test
def encode_dataset( model_path, min_std = 0.0 ): VAE = VariationalAutoencoder( dim_x = 28*28, dim_z = 50 ) #Should be consistent with model being loaded with VAE.session: VAE.saver.restore( VAE.session, VAE_model_path ) enc_x_lab_mean, enc_x_lab_var = VAE.encode( x_lab ) enc_x_ulab_mean, enc_x_ulab_var = VAE.encode( x_ulab ) enc_x_valid_mean, enc_x_valid_var = VAE.encode( x_valid ) enc_x_test_mean, enc_x_test_var = VAE.encode( x_test ) id_x_keep = np.std( enc_x_ulab_mean, axis = 0 ) > min_std enc_x_lab_mean, enc_x_lab_var = enc_x_lab_mean[ :, id_x_keep ], enc_x_lab_var[ :, id_x_keep ] enc_x_ulab_mean, enc_x_ulab_var = enc_x_ulab_mean[ :, id_x_keep ], enc_x_ulab_var[ :, id_x_keep ] enc_x_valid_mean, enc_x_valid_var = enc_x_valid_mean[ :, id_x_keep ], enc_x_valid_var[ :, id_x_keep ] enc_x_test_mean, enc_x_test_var = enc_x_test_mean[ :, id_x_keep ], enc_x_test_var[ :, id_x_keep ] data_lab = np.hstack( [ enc_x_lab_mean, enc_x_lab_var ] ) data_ulab = np.hstack( [ enc_x_ulab_mean, enc_x_ulab_var ] ) data_valid = np.hstack( [enc_x_valid_mean, enc_x_valid_var] ) data_test = np.hstack( [enc_x_test_mean, enc_x_test_var] ) return data_lab, data_ulab, data_valid, data_test