group_line_by = None # group_line_by = ['ERA-5', 'EC-Earth'] col_wrap = None wspace = 0.05 kwrgs = {'wspace':wspace, 'col_wrap':col_wrap} met = ['AUC-ROC', 'AUC-PR', 'BSS', 'Rel. Curve'] kwrgs = {'wspace':0.25, 'col_wrap':3, 'threshold_bin':fc.threshold_pred} met = ['AUC-ROC', 'AUC-PR', 'BSS', 'Rel. Curve', 'Precision', 'Accuracy'] expers = list(dict_experiments.keys()) models = list(dict_experiments[expers[0]].keys()) line_dim = 'model' fig = dfplots.valid_figures(dict_experiments, expers=expers, models=models, line_dim=line_dim, group_line_by=group_line_by, met=met, **kwrgs) if f_format == '.png': fig.savefig(os.path.join(filename + f_format), bbox_inches='tight') # dpi auto 600 elif f_format == '.pdf': fig.savefig(os.path.join(pdfs_folder,f_name+ f_format), bbox_inches='tight') print_sett(list_fc, stat_model_l, filename) np.save(filename + '.npy', dict_experiments) #%% #fcev.plot_scatter()
'wspace': 0.16, 'hspace': .25, 'col_wrap': 2, 'skip_redundant_title': True, 'lags_relcurve': [lag_rel], 'fontbase': 14, 'figaspect': 2 } #kwrgs = {'wspace':0.25, 'col_wrap':3, 'threshold_bin':fc.threshold_pred} met = ['AUC-ROC', 'AUC-PR', 'Precision', 'BSS', 'Accuracy', 'Rel. Curve'] line_dim = 'exper' group_line_by = None fig = dfplots.valid_figures(dict_merge_all, line_dim=line_dim, group_line_by=group_line_by, met=met, **kwrgs) f_format = '.pdf' pathfig_valid = os.path.join(filename + f_format) fig.savefig(pathfig_valid, bbox_inches='tight') # dpi auto 600 fc = list_of_fc[0] df, fig = fc.plot_feature_importances(lag=lag_rel) path_feat = filename + f'ifc{1}_logitregul_l{lag_rel}' + f_format fig.savefig(path_feat, bbox_inches='tight') fc.dict_sum[0].loc['Precision'].loc['Precision'] fc.dict_sum[0].loc['Accuracy'].loc['Accuracy']
# dict_experiments[new] = dict_experiments.pop(old) f_format = '.png' filename = os.path.join(working_folder, f_name) group_line_by = None #group_line_by = ['ERA-5', 'EC'] kwrgs = {'wspace': 0.08} met = ['AUC-ROC', 'AUC-PR', 'BSS', 'Rel. Curve'] expers = list(dict_experiments.keys()) models = list(dict_experiments[expers[0]].keys()) fig = dfplots.valid_figures(dict_experiments, expers=expers, models=models, line_dim='exper', group_line_by=group_line_by, met=met, **kwrgs) if f_format == '.png': fig.savefig(os.path.join(filename + f_format), bbox_inches='tight') # dpi auto 600 elif f_format == '.pdf': fig.savefig(os.path.join(pdfs_folder, f_name + f_format), bbox_inches='tight') print_sett(experiments, stat_model_l, filename) np.save(filename + '.npy', dict_experiments) #%% # =============================================================================
fc.fit_models(lead_max=35) dict_experiments = {} fc.perform_validation(n_boot=100, blocksize='auto', threshold_pred=(1.5, 'times_clim')) dict_experiments['test'] = fc.dict_sum working_folder, filename = fc._print_sett(list_of_fc=[fc]) store=True dict_all = dfplots.merge_valid_info([fc], store=store) if store: dict_merge_all = functions_pp.load_hdf5(filename) kwrgs = {'wspace':0.25, 'col_wrap':3} #, 'threshold_bin':fc.threshold_pred} met = ['AUC-ROC', 'AUC-PR', 'BSS', 'Rel. Curve', 'Precision', 'Accuracy'] expers = list(dict_experiments.keys()) line_dim = 'model' fig = dfplots.valid_figures(dict_merge_all, line_dim=line_dim, group_line_by=None, lines_legend=None, met=met, **kwrgs) # remove created output folders shutil.rmtree(rg.path_outsub1) shutil.rmtree(os.path.join(main_dir, 'data', 'preprocessed'))
dict_all = functions_pp.load_hdf5(filename+'.h5') kwrgs = {'wspace':0.12, 'col_wrap':None, 'lags_relcurve':[10, 20], 'skip_redundant_title':True, 'fontbase':14} #kwrgs = {'wspace':0.25, 'col_wrap':3, 'threshold_bin':fc.threshold_pred} # met = ['Rel. Curve'] met = ['AUC-ROC', 'AUC-PR', 'BSS', 'Rel. Curve'] line_dim = 'exper' fig = dfplots.valid_figures(dict_all, line_dim=line_dim, group_line_by=None, met=met, **kwrgs) f_format = '.pdf' pathfig_valid = os.path.join(filename + f_format) fig.savefig(pathfig_valid, bbox_inches='tight') # dpi auto 600 #%% # im = 0 # il = 1 # ifc = 0 # f_format = '.pdf'