sst1d_gen13 = generic1d(sst1d, 13) sst1d_gen3 = generic1d(sst1d, [1., 1., 1.]) sst1d_sha = shapiro1d(sst1d) # -> SHAPIRO AVEC GENERIC1D sst1d_bar13 = bartlett1d(sst1d, 13) # -> TESTEZ GAUSSIEN SUR 13 HEURES # - plots curve2(sst1d, 'k', label='Original', show=False, figsize=(12, 5)) curve2(sst1d_gen13, 'r', label='Generic 13 pts', show=False) curve2(sst1d_gen3, 'g', label='Generic 3 pts', show=False) curve2(sst1d_sha, 'b', label='shapiro', show=False) curve2(sst1d_bar13, 'm', label='Bartlett', legend=True) # -> MASQUEZ UNE PARTIE DES DONNEES ET JOUEZ AVEC LE PARAMETRE MASK= # -> LISEZ UN BLOCK 3D ET FILTREZ LE SUIVANT LE TEMPS # 2D # - filtrage sst2d_gen13 = generic2d(sst2d, 13) sst2d_gau13 = gaussian2d(sst2d, 13) # - plots kw = dict(vmin=sst2d.min(), vmax=sst2d.max(), colorbar=False, nmax=18) map2(sst2d, title='Original', figsize=(13, 3), subplot=131, show=False, **kw) map2(sst2d_gen13, title='Generic 13', subplot=132, show=False, **kw) map2(sst2d_gau13, title='Gauss 13', subplot=133, show=True, **kw) # -> JOUEZ AVEC MASK=
"""Test function :func:`~vacumm.misc.filters.generic2d`""" from vcmq import generic2d, N # Constant no mask var0 = N.ones((10, 10)) wei0 = N.ones((3, 3)) N.testing.assert_allclose(generic2d(var0, wei0), 1.) # Constant with mask var1 = N.ma.array(var0) var1[0:3, 0:3] = N.ma.masked wei1 = wei0 #N.testing.assert_allclose(generic2d(var1, wei1).compressed(), 1.) # Constant with variable weight var2 = var1 wei2 = wei1.copy() wei2[1, 1] = 2. wei2[[0, 2, 2, 0], [0, 0, 2, 2]] = 0. N.testing.assert_allclose(generic2d(var2, wei2, mask='minimal').compressed(), 1.)
sst1d_bar13 = bartlett1d(sst1d, 13) # -> TESTEZ GAUSSIEN SUR 13 HEURES # - plots curve2(sst1d, 'k', label='Original', show=False, figsize=(12, 5)) curve2(sst1d_gen13, 'r', label='Generic 13 pts', show=False) curve2(sst1d_gen3, 'g', label='Generic 3 pts', show=False) curve2(sst1d_sha, 'b', label='shapiro', show=False) curve2(sst1d_bar13, 'm', label='Bartlett', legend=True) # -> MASQUEZ UNE PARTIE DES DONNEES ET JOUEZ AVEC LE PARAMETRE MASK= # -> LISEZ UN BLOCK 3D ET FILTREZ LE SUIVANT LE TEMPS # 2D # - filtrage sst2d_gen13 = generic2d(sst2d, 13) sst2d_gau13 = gaussian2d(sst2d, 13) # - plots kw = dict(vmin=sst2d.min(), vmax=sst2d.max(), colorbar=False, nmax=18) map2(sst2d, title='Original', figsize=(13, 3), subplot=131, show=False, **kw) map2(sst2d_gen13, title='Generic 13', subplot=132, show=False, **kw) map2(sst2d_gau13, title='Gauss 13', subplot=133, show=True, **kw) # -> JOUEZ AVEC MASK=
"""Test function :func:`~vacumm.misc.filters.generic2d`""" from vcmq import generic2d, N # Constant no mask var0 = N.ones((10, 10)) wei0 = N.ones((3, 3)) N.testing.assert_allclose(generic2d(var0, wei0), 1.) # Constant with mask var1 = N.ma.array(var0) var1[0:3, 0:3] = N.ma.masked wei1 = wei0 #N.testing.assert_allclose(generic2d(var1, wei1).compressed(), 1.) # Constant with variable weight var2 = var1 wei2 = wei1.copy() wei2[1, 1] = 2. wei2[[0, 2, 2, 0], [0, 0, 2, 2]] = 0. N.testing.assert_allclose( generic2d(var2, wei2, mask='minimal').compressed(), 1.)