コード例 #1
0
def intersect_lines(a, b, c, d, segment=False):
    """
    Find the intersection of lines a-b and c-d.

    If the "segment" argument is true, treat the lines as segments, and check
    whether the intersection point is off the end of either segment.
    """
    # Reference:
    # http://geomalgorithms.com/a05-_intersect-1.html
    u = vec.vfrom(a, b)
    v = vec.vfrom(c, d)
    w = vec.vfrom(c, a)

    u_perp_dot_v = vec.dot(vec.perp(u), v)
    if float_equal(u_perp_dot_v, 0):
        return None  # We have collinear segments, no single intersection.

    v_perp_dot_w = vec.dot(vec.perp(v), w)
    s = v_perp_dot_w / u_perp_dot_v
    if segment and (s < 0 or s > 1):
        return None

    u_perp_dot_w = vec.dot(vec.perp(u), w)
    t = u_perp_dot_w / u_perp_dot_v
    if segment and (t < 0 or t > 1):
        return None

    return vec.add(a, vec.mul(u, s))
コード例 #2
0
def test_straight_joint_headings():
    # The math in calculating joint geometry can get numerically unstable
    # very close to straight joints at various headings.
    for heading_angle in range(0, 45):
        p = Pen()
        p.stroke_mode(1.0)
        p.move_to((0, 0))
        p.turn_to(heading_angle)
        p.line_forward(10)
        p.line_forward(10)

        path = p.paper.paths[0]
        path.render_path(2)  # Doesn't crash.

        # Check that the joint angle is 90 degrees from the heading.
        assert_equal(len(p.paper.paths), 1)
        segments = p.paper.paths[0].segments
        assert_equal(len(segments), 2)
        s0, s1 = segments

        target_angle = (heading_angle + 90) % 180

        joint_angle = math.degrees(vec.heading(vec.vfrom(s0.b_right, s0.b_left)))
        assert_almost_equal(joint_angle % 180, target_angle)

        joint_angle = math.degrees(vec.heading(vec.vfrom(s1.a_right, s1.a_left)))
        assert_almost_equal(joint_angle % 180, target_angle)
コード例 #3
0
def intersect_lines(a, b, c, d, segment=False):
    """
    Find the intersection of lines a-b and c-d.

    If the "segment" argument is true, treat the lines as segments, and check
    whether the intersection point is off the end of either segment.
    """
    # Reference:
    # http://geomalgorithms.com/a05-_intersect-1.html
    u = vec.vfrom(a, b)
    v = vec.vfrom(c, d)
    w = vec.vfrom(c, a)

    u_perp_dot_v = vec.dot(vec.perp(u), v)
    if float_equal(u_perp_dot_v, 0):
        return None  # We have collinear segments, no single intersection.

    v_perp_dot_w = vec.dot(vec.perp(v), w)
    s = v_perp_dot_w / u_perp_dot_v
    if segment and (s < 0 or s > 1):
        return None

    u_perp_dot_w = vec.dot(vec.perp(u), w)
    t = u_perp_dot_w / u_perp_dot_v
    if segment and (t < 0 or t > 1):
        return None

    return vec.add(a, vec.mul(u, s))
コード例 #4
0
    def arc_to(self, endpoint, center=None, start_slant=None, end_slant=None):
        """
        Draw an arc ending at the specified point, starting tangent to the
        current position and heading.
        """
        if points_equal(self._position, endpoint):
            return
        # Handle unspecified center.
        # We need to find the center of the arc, so we can find its radius. The
        # center of this arc is uniquely defined by the intersection of two
        # lines:
        # 1. The first line is perpendicular to the pen heading, passing
        #    through the pen position.
        # 2. The second line is the perpendicular bisector of the pen position
        #    and the target arc end point.
        v_pen = self._vector()
        v_perp = vec.perp(self._vector())
        v_chord = vec.vfrom(self._position, endpoint)
        if center is None:
            midpoint = vec.div(vec.add(self._position, endpoint), 2)
            v_bisector = vec.perp(v_chord)
            center = intersect_lines(
                self._position,
                vec.add(self._position, v_perp),
                midpoint,
                vec.add(midpoint, v_bisector),
            )

        # Determine true start heading. This may not be the same as the
        # original pen heading in some circumstances.
        assert not points_equal(center, self._position)
        v_radius_start = vec.vfrom(center, self._position)
        v_radius_perp = vec.perp(v_radius_start)
        if vec.dot(v_radius_perp, v_pen) < 0:
            v_radius_perp = vec.neg(v_radius_perp)
        start_heading = math.degrees(vec.heading(v_radius_perp))
        self.turn_to(start_heading)
        # Refresh v_pen and v_perp based on the new start heading.
        v_pen = self._vector()
        v_perp = vec.perp(self._vector())

        # Calculate the arc angle.
        # The arc angle is double the angle between the pen vector and the
        # chord vector. Arcing to the left is a positive angle, and arcing to
        # the right is a negative angle.
        arc_angle = 2 * math.degrees(vec.angle(v_pen, v_chord))
        radius = vec.mag(v_radius_start)
        # Check which side of v_pen the goes toward.
        if vec.dot(v_chord, v_perp) < 0:
            arc_angle = -arc_angle
            radius = -radius

        self._arc(
            center,
            radius,
            endpoint,
            arc_angle,
            start_slant,
            end_slant,
        )
コード例 #5
0
ファイル: pen.py プロジェクト: christian-oudard/canoepaddle
    def arc_to(self, endpoint, center=None, start_slant=None, end_slant=None):
        """
        Draw an arc ending at the specified point, starting tangent to the
        current position and heading.
        """
        if points_equal(self._position, endpoint):
            return
        # Handle unspecified center.
        # We need to find the center of the arc, so we can find its radius. The
        # center of this arc is uniquely defined by the intersection of two
        # lines:
        # 1. The first line is perpendicular to the pen heading, passing
        #    through the pen position.
        # 2. The second line is the perpendicular bisector of the pen position
        #    and the target arc end point.
        v_pen = self._vector()
        v_perp = vec.perp(self._vector())
        v_chord = vec.vfrom(self._position, endpoint)
        if center is None:
            midpoint = vec.div(vec.add(self._position, endpoint), 2)
            v_bisector = vec.perp(v_chord)
            center = intersect_lines(
                self._position,
                vec.add(self._position, v_perp),
                midpoint,
                vec.add(midpoint, v_bisector),
            )

        # Determine true start heading. This may not be the same as the
        # original pen heading in some circumstances.
        assert not points_equal(center, self._position)
        v_radius_start = vec.vfrom(center, self._position)
        v_radius_perp = vec.perp(v_radius_start)
        if vec.dot(v_radius_perp, v_pen) < 0:
            v_radius_perp = vec.neg(v_radius_perp)
        start_heading = math.degrees(vec.heading(v_radius_perp))
        self.turn_to(start_heading)
        # Refresh v_pen and v_perp based on the new start heading.
        v_pen = self._vector()
        v_perp = vec.perp(self._vector())

        # Calculate the arc angle.
        # The arc angle is double the angle between the pen vector and the
        # chord vector. Arcing to the left is a positive angle, and arcing to
        # the right is a negative angle.
        arc_angle = 2 * math.degrees(vec.angle(v_pen, v_chord))
        radius = vec.mag(v_radius_start)
        # Check which side of v_pen the goes toward.
        if vec.dot(v_chord, v_perp) < 0:
            arc_angle = -arc_angle
            radius = -radius

        self._arc(
            center,
            radius,
            endpoint,
            arc_angle,
            start_slant,
            end_slant,
        )
コード例 #6
0
def test_straight_joint_headings():
    # The math in calculating joint geometry can get numerically unstable
    # very close to straight joints at various headings.
    for heading_angle in range(0, 45):
        p = Pen()
        p.stroke_mode(1.0)
        p.move_to((0, 0))
        p.turn_to(heading_angle)
        p.line_forward(10)
        p.line_forward(10)

        path = p.paper.paths[0]
        path.render_path(2)  # Doesn't crash.

        # Check that the joint angle is 90 degrees from the heading.
        assert_equal(len(p.paper.paths), 1)
        segments = p.paper.paths[0].segments
        assert_equal(len(segments), 2)
        s0, s1 = segments

        target_angle = (heading_angle + 90) % 180

        joint_angle = math.degrees(vec.heading(vec.vfrom(s0.b_right, s0.b_left)))
        assert_almost_equal(joint_angle % 180, target_angle)

        joint_angle = math.degrees(vec.heading(vec.vfrom(s1.a_right, s1.a_left)))
        assert_almost_equal(joint_angle % 180, target_angle)
コード例 #7
0
    def set_slants(self, start_slant, end_slant):
        if start_slant is not None:
            start_slant = Heading(start_slant)
        if end_slant is not None:
            end_slant = Heading(end_slant)

        self.start_slant = start_slant
        self.end_slant = end_slant

        # Intersect the slant lines with the left and right offset circles
        # to find the corners.
        center_left, radius_left = self.offset_circle_left()
        center_right, radius_right = self.offset_circle_right()

        # Start corners.
        if start_slant is None:
            v_slant = vec.vfrom(self.center, self.a)
        else:
            v_slant = vec.from_heading(start_slant.rad)
        a = self.a
        b = vec.add(self.a, v_slant)

        points_left = intersect_circle_line(center_left, radius_left, a, b)
        points_right = intersect_circle_line(center_right, radius_right, a, b)

        if len(points_left) == 0 or len(points_right) == 0:
            self.start_joint_illegal = True
            return

        self.a_left = Point(*closest_point_to(self.a, points_left))
        self.a_right = Point(*closest_point_to(self.a, points_right))

        # End corners.
        if end_slant is None:
            v_slant = vec.vfrom(self.center, self.b)
        else:
            v_slant = vec.from_heading(end_slant.rad)
        a = self.b
        b = vec.add(self.b, v_slant)

        points_left = intersect_circle_line(center_left, radius_left, a, b)
        points_right = intersect_circle_line(center_right, radius_right, a, b)

        if len(points_left) == 0 or len(points_right) == 0:
            self.end_joint_illegal = True
            return

        self.b_left = Point(*closest_point_to(self.b, points_left))
        self.b_right = Point(*closest_point_to(self.b, points_right))

        self.check_degenerate_segment()
コード例 #8
0
    def set_slants(self, start_slant, end_slant):
        if start_slant is not None:
            start_slant = Heading(start_slant)
        if end_slant is not None:
            end_slant = Heading(end_slant)

        self.start_slant = start_slant
        self.end_slant = end_slant

        # Intersect the slant lines with the left and right offset circles
        # to find the corners.
        center_left, radius_left = self.offset_circle_left()
        center_right, radius_right = self.offset_circle_right()

        # Start corners.
        if start_slant is None:
            v_slant = vec.vfrom(self.center, self.a)
        else:
            v_slant = vec.from_heading(start_slant.rad)
        a = self.a
        b = vec.add(self.a, v_slant)

        points_left = intersect_circle_line(center_left, radius_left, a, b)
        points_right = intersect_circle_line(center_right, radius_right, a, b)

        if len(points_left) == 0 or len(points_right) == 0:
            self.start_joint_illegal = True
            return

        self.a_left = Point(*closest_point_to(self.a, points_left))
        self.a_right = Point(*closest_point_to(self.a, points_right))

        # End corners.
        if end_slant is None:
            v_slant = vec.vfrom(self.center, self.b)
        else:
            v_slant = vec.from_heading(end_slant.rad)
        a = self.b
        b = vec.add(self.b, v_slant)

        points_left = intersect_circle_line(center_left, radius_left, a, b)
        points_right = intersect_circle_line(center_right, radius_right, a, b)

        if len(points_left) == 0 or len(points_right) == 0:
            self.end_joint_illegal = True
            return

        self.b_left = Point(*closest_point_to(self.b, points_left))
        self.b_right = Point(*closest_point_to(self.b, points_right))

        self.check_degenerate_segment()
コード例 #9
0
ファイル: pen.py プロジェクト: christian-oudard/canoepaddle
    def arc_left(
        self, arc_angle, radius=None, center=None, start_slant=None, end_slant=None,
    ):
        if (
            (radius is None and center is None) or
            (radius is not None and center is not None)
        ):
            raise TypeError('You must specify exactly one of center or radius.')

        arc_angle = Angle(arc_angle)
        # Create a radius vector, which is a vector from the arc center to the
        # current position. Subtract to find the center, then rotate the radius
        # vector to find the arc end point.
        if center is None:
            if arc_angle < 0:
                radius = -abs(radius)
            v_radius = vec.neg(vec.perp(self._vector(radius)))
            center = vec.sub(self._position, v_radius)
        elif radius is None:
            v_radius = vec.vfrom(center, self._position)
            radius = vec.mag(v_radius)
            if arc_angle < 0:
                radius = -radius

        endpoint = vec.add(center, vec.rotate(v_radius, arc_angle.rad))

        self._arc(
            center,
            radius,
            endpoint,
            arc_angle,
            start_slant=start_slant,
            end_slant=end_slant,
        )
コード例 #10
0
    def arc_left(
        self, arc_angle, radius=None, center=None, start_slant=None, end_slant=None,
    ):
        if (
            (radius is None and center is None)
            or (radius is not None and center is not None)
        ):
            raise TypeError('You must specify exactly one of center or radius.')

        arc_angle = Angle(arc_angle)
        # Create a radius vector, which is a vector from the arc center to the
        # current position. Subtract to find the center, then rotate the radius
        # vector to find the arc end point.
        if center is None:
            if arc_angle < 0:
                radius = -abs(radius)
            v_radius = vec.neg(vec.perp(self._vector(radius)))
            center = vec.sub(self._position, v_radius)
        elif radius is None:
            v_radius = vec.vfrom(center, self._position)
            radius = vec.mag(v_radius)
            if arc_angle < 0:
                radius = -radius

        endpoint = vec.add(center, vec.rotate(v_radius, arc_angle.rad))

        self._arc(
            center,
            radius,
            endpoint,
            arc_angle,
            start_slant=start_slant,
            end_slant=end_slant,
        )
コード例 #11
0
def collide_particles(p1, p2):
    restitution = p1.restitution * p2.restitution

    # Don't collide immovable particles.
    if p1.immovable and p2.immovable:
        return

    # Test if p1 and p2 are actually intersecting.
    if not intersect(p1, p2):
        return

    # If one particle is immovable, make it the first one.
    if not p1.immovable and p2.immovable:
        p1, p2 = p2, p1

    # Vector spanning between the centers, normal to contact surface.
    v_span = vec.vfrom(p1.pos, p2.pos)

    # Split into normal and tangential components and calculate
    # initial velocities.
    normal = vec.norm(v_span)
    tangent = vec.perp(normal)
    v1_tangent = vec.proj(p1.velocity, tangent)
    v2_tangent = vec.proj(p2.velocity, tangent)
    p1_initial = vec.dot(p1.velocity, normal)
    p2_initial = vec.dot(p2.velocity, normal)

    # Don't collide if particles were actually moving away from each other, so
    # they don't get stuck inside one another.
    if p1_initial - p2_initial < 0:
        return

    # Handle immovable particles specially.
    if p1.immovable:
        p2_final = -p2_initial * restitution
        p2.velocity = vec.add(
            v2_tangent,
            vec.mul(normal, p2_final),
        )
        return

    # Elastic collision equations along normal component.
    m1, m2 = p1.mass, p2.mass
    m1plusm2 = (m1 + m2) / restitution
    p1_final = (p1_initial * (m1 - m2) / m1plusm2 + p2_initial *
                (2 * m2) / m1plusm2)
    p2_final = (p2_initial * (m2 - m1) / m1plusm2 + p1_initial *
                (2 * m1) / m1plusm2)

    # Tangential component is unchanged, recombine.
    p1.velocity = vec.add(
        v1_tangent,
        vec.mul(normal, p1_final),
    )
    p2.velocity = vec.add(
        v2_tangent,
        vec.mul(normal, p2_final),
    )
コード例 #12
0
def intersect_circle_line(center, radius, line_start, line_end):
    """
    Find the intersection of a circle with a line.
    """
    radius = abs(radius)

    # First check whether the line is too far away, or if we have a
    # single point of contact.
    # Reference:
    # http://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html
    r = vec.vfrom(center, line_start)
    v = vec.perp(vec.vfrom(line_start, line_end))
    d = vec.proj(r, v)
    dist = vec.mag(d)
    if float_equal(dist, radius):
        # Single intersection point, because the circle and line are tangent.
        point = vec.add(center, d)
        return [point]
    elif dist > radius:
        return []

    # Set up parametric equations for the line and the circle, and solve them.
    # Reference:
    # http://www.cs.cf.ac.uk/Dave/CM0268/PDF/circle_line_intersect_proof.pdf
    xc, yc = center
    x0, y0 = line_start
    x1, y1 = line_end
    line_x, line_y = (x1 - x0), (y1 - y0)  # f, g
    dx, dy = (x0 - xc), (y0 - yc)

    a = line_x**2 + line_y**2
    b = 2 * (line_x * dx + line_y * dy)
    c = dx**2 + dy**2 - radius**2
    t0, t1 = quadratic_formula(a, b, c)

    return [
        (
            x0 + line_x * t0,
            y0 + line_y * t0,
        ),
        (
            x0 + line_x * t1,
            y0 + line_y * t1,
        ),
    ]
コード例 #13
0
def intersect_circle_line(center, radius, line_start, line_end):
    """
    Find the intersection of a circle with a line.
    """
    radius = abs(radius)

    # First check whether the line is too far away, or if we have a
    # single point of contact.
    # Reference:
    # http://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html
    r = vec.vfrom(center, line_start)
    v = vec.perp(vec.vfrom(line_start, line_end))
    d = vec.proj(r, v)
    dist = vec.mag(d)
    if float_equal(dist, radius):
        # Single intersection point, because the circle and line are tangent.
        point = vec.add(center, d)
        return [point]
    elif dist > radius:
        return []

    # Set up parametric equations for the line and the circle, and solve them.
    # Reference:
    # http://www.cs.cf.ac.uk/Dave/CM0268/PDF/circle_line_intersect_proof.pdf
    xc, yc = center
    x0, y0 = line_start
    x1, y1 = line_end
    line_x, line_y = (x1 - x0), (y1 - y0)  # f, g
    dx, dy = (x0 - xc), (y0 - yc)

    a = line_x**2 + line_y**2
    b = 2 * (line_x * dx + line_y * dy)
    c = dx**2 + dy**2 - radius**2
    t0, t1 = quadratic_formula(a, b, c)

    return [
        (
            x0 + line_x * t0,
            y0 + line_y * t0,
        ),
        (
            x0 + line_x * t1,
            y0 + line_y * t1,
        ),
    ]
コード例 #14
0
    def collide_wall(self, p):
        restitution = self.restitution * p.restitution

        # First, check that we haven't crossed through the wall due to
        # extreme speed and low framerate.
        intersection = intersect_segments(self.p1, self.p2, p.last_pos, p.pos)
        if intersection:
            p.pos = p.last_pos
            p.rebound(self.normal, intersection, restitution)
            return

        # Find vectors to each endpoint of the segment.
        v1 = vec.vfrom(self.p1, p.pos)
        v2 = vec.vfrom(self.p2, p.pos)

        # Find a perpendicular vector from the wall to p.
        v_dist = vec.proj(v1, self.normal)

        # Test distance from the wall.
        radius2 = p.radius**2
        if vec.mag2(v_dist) > radius2:
            return

        # Test for collision with the endpoints of the segment.
        # Check whether p is too far off the end of the segment, by checking
        # the sign of the vector projection, then a radius check for the
        # distance from the endpoint.
        if vec.dot(v1, self.tangent) < 0:
            if vec.mag2(v1) <= radius2:
                p.rebound(v1, self.p1, restitution)
            return
        if vec.dot(v2, self.tangent) > 0:
            if vec.mag2(v2) <= radius2:
                p.rebound(v2, self.p2, restitution)
            return

        # Test that p is headed toward the wall.
        if vec.dot(p.velocity, v_dist) >= c.epsilon:
            return

        # We are definitely not off the ends of the segment, and close enough
        # that we are colliding.
        p.rebound(self.normal, vec.sub(p.pos, v_dist), restitution)
コード例 #15
0
    def collide_wall(self, p):
        restitution = self.restitution * p.restitution

        # First, check that we haven't crossed through the wall due to
        # extreme speed and low framerate.
        intersection = intersect_segments(self.p1, self.p2, p.last_pos, p.pos)
        if intersection:
            p.pos = p.last_pos
            p.rebound(self.normal, intersection, restitution)
            return

        # Find vectors to each endpoint of the segment.
        v1 = vec.vfrom(self.p1, p.pos)
        v2 = vec.vfrom(self.p2, p.pos)

        # Find a perpendicular vector from the wall to p.
        v_dist = vec.proj(v1, self.normal)

        # Test distance from the wall.
        radius2 = p.radius**2
        if vec.mag2(v_dist) > radius2:
            return

        # Test for collision with the endpoints of the segment.
        # Check whether p is too far off the end of the segment, by checking
        # the sign of the vector projection, then a radius check for the
        # distance from the endpoint.
        if vec.dot(v1, self.tangent) < 0:
            if vec.mag2(v1) <= radius2:
                p.rebound(v1, self.p1, restitution)
            return
        if vec.dot(v2, self.tangent) > 0:
            if vec.mag2(v2) <= radius2:
                p.rebound(v2, self.p2, restitution)
            return

        # Test that p is headed toward the wall.
        if vec.dot(p.velocity, v_dist) >= c.epsilon:
            return

        # We are definitely not off the ends of the segment, and close enough
        # that we are colliding.
        p.rebound(self.normal, vec.sub(p.pos, v_dist), restitution)
コード例 #16
0
def draw_graph(graph):
    gap_size = 0.25

    p = canoepaddle.Pen()
    p.stroke_mode(0.1, 'black')
    for a, b in graph_edges(graph):
        gap = vec.norm(vec.vfrom(a, b), gap_size)
        p.move_to(vec.add(a, gap))
        p.line_to(vec.sub(b, gap))

    return p.paper
コード例 #17
0
def intersect_circles(center1, radius1, center2, radius2):
    radius1 = abs(radius1)
    radius2 = abs(radius2)

    if radius2 > radius1:
        return intersect_circles(center2, radius2, center1, radius1)

    transverse = vec.vfrom(center1, center2)
    dist = vec.mag(transverse)

    # Check for identical or concentric circles. These will have either
    # no points in common or all points in common, and in either case, we
    # return an empty list.
    if points_equal(center1, center2):
        return []

    # Check for exterior or interior tangent.
    radius_sum = radius1 + radius2
    radius_difference = abs(radius1 - radius2)
    if (float_equal(dist, radius_sum) or float_equal(dist, radius_difference)):
        return [
            vec.add(center1, vec.norm(transverse, radius1)),
        ]

    # Check for non intersecting circles.
    if dist > radius_sum or dist < radius_difference:
        return []

    # If we've reached this point, we know that the two circles intersect
    # in two distinct points.
    # Reference:
    # http://mathworld.wolfram.com/Circle-CircleIntersection.html

    # Pretend that the circles are arranged along the x-axis.
    # Find the x-value of the intersection points, which is the same for both
    # points. Then find the chord length "a" between the two intersection
    # points, and use vector math to find the points.
    dist2 = vec.mag2(transverse)
    x = (dist2 - radius2**2 + radius1**2) / (2 * dist)
    a = ((1 / dist) * sqrt(
        (-dist + radius1 - radius2) * (-dist - radius1 + radius2) *
        (-dist + radius1 + radius2) * (dist + radius1 + radius2)))
    chord_middle = vec.add(
        center1,
        vec.norm(transverse, x),
    )
    perp = vec.perp(transverse)
    return [
        vec.add(chord_middle, vec.norm(perp, a / 2)),
        vec.add(chord_middle, vec.norm(perp, -a / 2)),
    ]
コード例 #18
0
 def rebound(self, normal, point=None, restitution=1):
     # Split into normal and tangential components.
     tangent = vec.perp(normal)
     v_tangent = vec.proj(self.velocity, tangent)
     v_normal = vec.proj(self.velocity, normal)
     # Invert normal component and recombine, with restitution.
     v_normal = vec.neg(v_normal)
     self.velocity = vec.add(v_tangent, vec.mul(v_normal, restitution))
     # If the particle is partially inside the wall, move it out.
     if point is not None:
         v = vec.vfrom(point, self.pos)
         if vec.mag2(v) < self.radius ** 2:
             v = vec.norm(v, self.radius)
             self.pos = vec.add(point, v)
コード例 #19
0
def collide_particles(p1, p2):
    restitution = p1.restitution * p2.restitution

    # Don't collide immovable particles.
    if p1.immovable and p2.immovable:
        return

    # Test if p1 and p2 are actually intersecting.
    if not intersect(p1, p2):
        return

    # If one particle is immovable, make it the first one.
    if not p1.immovable and p2.immovable:
        p1, p2 = p2, p1

    # Vector spanning between the centers, normal to contact surface.
    v_span = vec.vfrom(p1.pos, p2.pos)

    # Split into normal and tangential components and calculate
    # initial velocities.
    normal = vec.norm(v_span)
    tangent = vec.perp(normal)
    v1_tangent = vec.proj(p1.velocity, tangent)
    v2_tangent = vec.proj(p2.velocity, tangent)
    p1_initial = vec.dot(p1.velocity, normal)
    p2_initial = vec.dot(p2.velocity, normal)

    # Don't collide if particles were actually moving away from each other, so
    # they don't get stuck inside one another.
    if p1_initial - p2_initial < 0:
        return

    # Handle immovable particles specially.
    if p1.immovable:
        p2_final = -p2_initial * restitution
        p2.velocity = vec.add(v2_tangent, vec.mul(normal, p2_final))
        return

    # Elastic collision equations along normal component.
    m1, m2 = p1.mass, p2.mass
    m1plusm2 = (m1 + m2) / restitution
    p1_final = p1_initial * (m1 - m2) / m1plusm2 + p2_initial * (2 * m2) / m1plusm2
    p2_final = p2_initial * (m2 - m1) / m1plusm2 + p1_initial * (2 * m1) / m1plusm2

    # Tangential component is unchanged, recombine.
    p1.velocity = vec.add(v1_tangent, vec.mul(normal, p1_final))
    p2.velocity = vec.add(v2_tangent, vec.mul(normal, p2_final))
コード例 #20
0
def collinear(*points):
    """
    Determine whether the given points are collinear in the order they were
    passed in.
    """
    # Find vectors between successive points, in a chain.
    vectors = []
    for a, b in pairwise(points):
        vectors.append(vec.vfrom(a, b))
    # Find the angles between successive vectors in the chain. Actually we skip
    # the inverse cosine calculation required to find angle, and just use ratio
    # instead. The ratio is the cosine of the angle between the vectors.
    for u, v in pairwise(vectors):
        ratio = vec.dot(u, v) / (vec.mag(u) * vec.mag(v))
        if ratio < 1.0 - epsilon:
            return False
    return True
コード例 #21
0
def collinear(*points):
    """
    Determine whether the given points are collinear in the order they were
    passed in.
    """
    # Find vectors between successive points, in a chain.
    vectors = []
    for a, b in pairwise(points):
        vectors.append(vec.vfrom(a, b))
    # Find the angles between successive vectors in the chain. Actually we skip
    # the inverse cosine calculation required to find angle, and just use ratio
    # instead. The ratio is the cosine of the angle between the vectors.
    for u, v in pairwise(vectors):
        ratio = vec.dot(u, v) / (vec.mag(u) * vec.mag(v))
        if ratio < 1.0 - epsilon:
            return False
    return True
コード例 #22
0
 def rebound(self, normal, point=None, restitution=1):
     # Split into normal and tangential components.
     tangent = vec.perp(normal)
     v_tangent = vec.proj(self.velocity, tangent)
     v_normal = vec.proj(self.velocity, normal)
     # Invert normal component and recombine, with restitution.
     v_normal = vec.neg(v_normal)
     self.velocity = vec.add(
         v_tangent,
         vec.mul(v_normal, restitution),
     )
     # If the particle is partially inside the wall, move it out.
     if point is not None:
         v = vec.vfrom(point, self.pos)
         if vec.mag2(v) < self.radius**2:
             v = vec.norm(v, self.radius)
             self.pos = vec.add(point, v)
コード例 #23
0
    def calc_rudder_force(self):
        # We continuously bring the direction of the player's movement to be
        # closer in line with the direction it is facing.
        target_velocity = vec.norm(self.direction, self.speed)
        force = vec.vfrom(self.velocity, target_velocity)
        if force == (0, 0):
            return (0, 0)

        # The strength of the rudder is highest when acting perpendicular to
        # the direction of movement.
        v_perp = vec.norm(vec.perp(self.velocity))
        angle_multiplier = abs(vec.dot(v_perp, self.direction))
        strength = self.speed * c.player_rudder_strength
        strength = min(strength, c.player_max_rudder_strength)
        strength *= angle_multiplier
        if strength == 0:
            return (0, 0)

        force = vec.norm(force, strength)
        return force
コード例 #24
0
    def calc_rudder_force(self):
        # We continuously bring the direction of the player's movement to be
        # closer in line with the direction it is facing.
        target_velocity = vec.norm(self.direction, self.speed)
        force = vec.vfrom(self.velocity, target_velocity)
        if force == (0, 0):
            return (0, 0)

        # The strength of the rudder is highest when acting perpendicular to
        # the direction of movement.
        v_perp = vec.norm(vec.perp(self.velocity))
        angle_multiplier = abs(vec.dot(v_perp, self.direction))
        strength = self.speed * c.player_rudder_strength
        strength = min(strength, c.player_max_rudder_strength)
        strength *= angle_multiplier
        if strength == 0:
            return (0, 0)

        force = vec.norm(force, strength)
        return force
コード例 #25
0
def partition(points, l1, l2, s=None):
    """
    Partition a set of points by a line.

    The line is defined by l1, l2. The desired side of the line is given by the
    point s.

    If s is not given, return points to the right of the line.

    If eq is True, also include points on the line.

    >>> sorted(partition([(-1,0), (0,0), (1,0)], (0,1), (0,-1), (2,0)))
    [(0, 0), (1, 0)]
    >>> sorted(partition([(-1,0), (0,0), (1,0)], (0,1), (0,-1), (-2,0)))
    [(-1, 0), (0, 0)]
    >>> points = [(-2,2), (-1,0), (0,0), (1,0)]
    >>> sorted(partition(points, (-1,0), (0,1), (3,0)))
    [(-1, 0), (0, 0), (1, 0)]
    >>> sorted(partition(points, (-1,0), (0,1), (-3,0)))
    [(-2, 2), (-1, 0)]

    You can omit the argument "s" if you don't care.
    >>> sorted(partition([(-1,0), (0,0), (1,0)], (0,1), (0,-1)))
    [(-1, 0), (0, 0)]
    """
    if s is None:
        s = vec.add(l1, vec.perp(vec.vfrom(l1, l2)))

    if l1 == l2:
        raise ValueError('l1 equals l2')
    sign = sign_of(cmp_line(l1, l2, s))
    if sign == 0:
        raise ValueError('s is on the line l1 l2')

    for p in points:
        c = cmp_line(l1, l2, p)
        if c == sign:
            yield p
        elif c == 0:
            yield p
コード例 #26
0
def partition(points, l1, l2, s=None):
    """
    Partition a set of points by a line.

    The line is defined by l1, l2. The desired side of the line is given by the
    point s.

    >>> partition([(-1,0), (0,0), (1,0)], (0,1), (0,-1), (2,0))[0]
    {(1, 0)}
    >>> partition([(-1,0), (0,0), (1,0)], (0,1), (0,-1), (-2,0))[0]
    {(-1, 0)}
    >>> points = [(-2,2), (-1,0), (0,0), (1,0)]
    >>> sorted(partition(points, (-1,0), (0,1), (3,0))[0])
    [(0, 0), (1, 0)]
    >>> sorted(partition(points, (-1,0), (0,1), (-3,0))[0])
    [(-2, 2)]

    You can omit the argument "s" if you don't care.
    >>> partition([(-1,0), (0,0), (1,0)], (0,1), (0,-1))
    ({(-1, 0)}, {(1, 0)})
    """
    if s is None:
        s = vec.add(l1, vec.perp(vec.vfrom(l1, l2)))

    if l1 == l2:
        raise ValueError('l1 equals l2')
    sign = cmp_line(l1, l2, s)
    if sign == 0:
        raise ValueError('s is on the line l1 l2')

    forward = set()
    reverse = set()
    for p in points:
        c = cmp_line(l1, l2, p)
        if c == sign:
            forward.add(p)
        elif c == -sign:
            reverse.add(p)
    return forward, reverse
コード例 #27
0
    def join_with_arc(self, other):
        # Special case coincident arcs.
        if points_equal(self.center, other.center):
            if not (
                float_equal(self.radius, other.radius)
                and float_equal(self.width, other.width)
            ):
                self.end_joint_illegal = True
                other.start_joint_illegal = True
                return

            r = vec.vfrom(self.center, self.b)
            if self.radius < 0:
                r = vec.neg(r)
            v_left = vec.norm(r, self.radius - self.width / 2)
            self.b_left = other.a_left = Point(*vec.add(self.center, v_left))
            v_right = vec.norm(r, self.radius + self.width / 2)
            self.b_right = other.a_right = Point(*vec.add(self.center, v_right))
            return

        c1, r1 = self.offset_circle_left()
        c2, r2 = other.offset_circle_left()
        points_left = intersect_circles(c1, r1, c2, r2)
        if len(points_left) > 0:
            p = Point(*closest_point_to(self.b, points_left))
            self.b_left = other.a_left = p

        c1, r1 = self.offset_circle_right()
        c2, r2 = other.offset_circle_right()
        points_right = intersect_circles(c1, r1, c2, r2)
        if len(points_right) > 0:
            p = Point(*closest_point_to(self.b, points_right))
            self.b_right = other.a_right = p

        if len(points_left) == 0 or len(points_right) == 0:
            self.end_joint_illegal = True
            other.start_joint_illegal = True
コード例 #28
0
    def join_with_arc(self, other):
        # Special case coincident arcs.
        if points_equal(self.center, other.center):
            if not (
                float_equal(self.radius, other.radius) and
                float_equal(self.width, other.width)
            ):
                self.end_joint_illegal = True
                other.start_joint_illegal = True
                return

            r = vec.vfrom(self.center, self.b)
            if self.radius < 0:
                r = vec.neg(r)
            v_left = vec.norm(r, self.radius - self.width / 2)
            self.b_left = other.a_left = Point(*vec.add(self.center, v_left))
            v_right = vec.norm(r, self.radius + self.width / 2)
            self.b_right = other.a_right = Point(*vec.add(self.center, v_right))
            return

        c1, r1 = self.offset_circle_left()
        c2, r2 = other.offset_circle_left()
        points_left = intersect_circles(c1, r1, c2, r2)
        if len(points_left) > 0:
            p = Point(*closest_point_to(self.b, points_left))
            self.b_left = other.a_left = p

        c1, r1 = self.offset_circle_right()
        c2, r2 = other.offset_circle_right()
        points_right = intersect_circles(c1, r1, c2, r2)
        if len(points_right) > 0:
            p = Point(*closest_point_to(self.b, points_right))
            self.b_right = other.a_right = p

        if len(points_left) == 0 or len(points_right) == 0:
            self.end_joint_illegal = True
            other.start_joint_illegal = True
コード例 #29
0
 def __init__(self, p1, p2, restitution=c.restitution_wall):
     self.p1 = p1
     self.p2 = p2
     self.restitution = restitution
     self.tangent = vec.vfrom(self.p1, self.p2)
     self.normal = vec.perp(self.tangent)
コード例 #30
0
ファイル: util.py プロジェクト: christian-oudard/ithkuil
 def forwardness(p):
     v_p = vec.vfrom(base_middle, p)
     return vec.dot(v_p, v_base),
コード例 #31
0
 def contains(self, point):
     sign = vec.dot(
         vec.vfrom(self.center, point),
         self.normal,
     )
     return (sign >= 0)
コード例 #32
0
 def last_slant_width(self):
     seg = self.last_segment()
     return vec.mag(vec.vfrom(seg.b_left, seg.b_right))
コード例 #33
0
    def draw(self, pen):
        #TODO: this is not very good.

        def scythe_cap(pen, end):
            start_heading = pen.heading

            switch = False
            if self.character.mirrored_x:
                switch = not switch
            if self.flipped:
                switch = not switch

            if not switch:
                top = end
                bottom = pen.position
            else:
                top = pen.position
                bottom = end

            # Trace the curves with a temporary pen.
            temp_pen = pen.copy()
            if not switch:
                arc = temp_pen.arc_right
            else:
                arc = temp_pen.arc_left

            temp_pen.move_to(top)
            temp_pen.turn_to(start_heading)
            outer_arcs = [
                (2.4, 1.6),
                (1.0, 2.8),
            ]
            outer_points = []
            for radius, distance in outer_arcs:
                circumference = radius * 2 * math.pi
                circle_ratio = distance / circumference
                angle = circle_ratio * 360
                arc(angle, radius)
                outer_points.append(temp_pen.position)
            outer_tip_angle = temp_pen.heading

            temp_pen.move_to(bottom)
            temp_pen.turn_to(start_heading)
            temp_pen.move_forward(0.5)
            inner_forward = temp_pen.position
            temp_pen.arc_to(outer_points[-1])
            inner_tip_angle = temp_pen.heading

            # Draw with the real pen.
            if not switch:
                pen.line_to(inner_forward)
                pen.arc_to(outer_points[-1])
                pen.turn_to(outer_tip_angle + 180)
                for p in reversed(outer_points[:-1]):
                    pen.arc_to(p)
                pen.arc_to(top)
            else:
                for p in outer_points:
                    pen.arc_to(p)
                pen.turn_to(inner_tip_angle + 180)
                pen.arc_to(inner_forward)
                pen.line_to(bottom)

        pen.line_to_y(BOTTOM + pen.mode.width / 2)
        pen.turn_to(0)

        # See how far forward we have to go to make the top of the stroke
        # zero-length.
        temp_pen = pen.copy(paper=True)
        temp_pen.line_forward(pen.mode.width, end_slant=90)
        seg = temp_pen.last_segment()
        extra_left = vec.mag(vec.vfrom(seg.a_left, seg.b_left))
        extra_right = vec.mag(vec.vfrom(seg.a_right, seg.b_right))
        extra = min(extra_left, extra_right)
        dist = pen.mode.width - extra
        pen.line_forward(dist, end_slant=90)
        pen.last_segment().end_cap = scythe_cap
コード例 #34
0
def intersect(p1, p2):
    distance2 = vec.mag2(vec.vfrom(p1.pos, p2.pos))
    return distance2 <= (p1.radius + p2.radius)**2
コード例 #35
0
def closest_point_to(target, points):
    return min(
        points,
        key=lambda p: vec.mag2(vec.vfrom(target, p))
    )
コード例 #36
0
 def _vector(self):
     return vec.vfrom(self.a, self.b)
コード例 #37
0
    def join_with_line(self, other):
        v_self = self._vector()
        v_other = other._vector()

        # Check turn angle.
        self_heading = Heading.from_rad(vec.heading(v_self))
        other_heading = Heading.from_rad(vec.heading(v_other))
        turn_angle = self_heading.angle_to(other_heading)

        # Special case equal widths.
        if(
            abs(turn_angle) <= MAX_TURN_ANGLE
            and float_equal(self.width, other.width)
        ):
            # When joints between segments of equal width are straight or
            # almost straight, the line-intersection method becomes very
            # numerically unstable, so use another method instead.

            # For each segment, get a vector perpendicular to the
            # segment, then add them. This is an angle bisector for
            # the angle of the joint.
            w_self = self._width_vector()
            w_other = other._width_vector()
            v_bisect = vec.add(w_self, w_other)

            # Make the bisector have the correct length.
            half_angle = vec.angle(v_other, v_bisect)
            v_bisect = vec.norm(
                v_bisect,
                (self.width / 2) / math.sin(half_angle)
            )

            # Determine the left and right joint spots.
            p_left = vec.add(self.b, v_bisect)
            p_right = vec.sub(self.b, v_bisect)
        else:
            a, b = self.offset_line_left()
            c, d = other.offset_line_left()
            p_left = intersect_lines(a, b, c, d)

            a, b = self.offset_line_right()
            c, d = other.offset_line_right()
            p_right = intersect_lines(a, b, c, d)

        # Make sure the joint points are "forward" from the perspective
        # of each segment.
        if p_left is not None:
            if vec.dot(vec.vfrom(self.a_left, p_left), v_self) < 0:
                p_left = None
        if p_right is not None:
            if vec.dot(vec.vfrom(self.a_right, p_right), v_self) < 0:
                p_right = None

        # Don't join the outer sides if the turn angle is too steep.
        if abs(turn_angle) > MAX_TURN_ANGLE:
            if turn_angle > 0:
                p_right = None
            else:
                p_left = None

        if p_left is not None:
            self.b_left = other.a_left = Point(*p_left)
        if p_right is not None:
            self.b_right = other.a_right = Point(*p_right)

        if p_left is None or p_right is None:
            self.end_joint_illegal = True
            other.start_joint_illegal = True
コード例 #38
0
ファイル: pen.py プロジェクト: christian-oudard/canoepaddle
 def turn_toward(self, point):
     v = vec.vfrom(self._position, point)
     heading = math.degrees(vec.heading(v))
     self.turn_to(heading)
コード例 #39
0
def intersect_circles(center1, radius1, center2, radius2):
    radius1 = abs(radius1)
    radius2 = abs(radius2)

    if radius2 > radius1:
        return intersect_circles(center2, radius2, center1, radius1)

    transverse = vec.vfrom(center1, center2)
    dist = vec.mag(transverse)

    # Check for identical or concentric circles. These will have either
    # no points in common or all points in common, and in either case, we
    # return an empty list.
    if points_equal(center1, center2):
        return []

    # Check for exterior or interior tangent.
    radius_sum = radius1 + radius2
    radius_difference = abs(radius1 - radius2)
    if (
        float_equal(dist, radius_sum) or
        float_equal(dist, radius_difference)
    ):
        return [
            vec.add(
                center1,
                vec.norm(transverse, radius1)
            ),
        ]

    # Check for non intersecting circles.
    if dist > radius_sum or dist < radius_difference:
        return []

    # If we've reached this point, we know that the two circles intersect
    # in two distinct points.
    # Reference:
    # http://mathworld.wolfram.com/Circle-CircleIntersection.html

    # Pretend that the circles are arranged along the x-axis.
    # Find the x-value of the intersection points, which is the same for both
    # points. Then find the chord length "a" between the two intersection
    # points, and use vector math to find the points.
    dist2 = vec.mag2(transverse)
    x = (dist2 - radius2**2 + radius1**2) / (2 * dist)
    a = (
        (1 / dist) *
        sqrt(
            (-dist + radius1 - radius2) *
            (-dist - radius1 + radius2) *
            (-dist + radius1 + radius2) *
            (dist + radius1 + radius2)
        )
    )
    chord_middle = vec.add(
        center1,
        vec.norm(transverse, x),
    )
    perp = vec.perp(transverse)
    return [
        vec.add(chord_middle, vec.norm(perp, a / 2)),
        vec.add(chord_middle, vec.norm(perp, -a / 2)),
    ]
コード例 #40
0
def intersect(p1, p2):
    distance2 = vec.mag2(vec.vfrom(p1.pos, p2.pos))
    return distance2 <= (p1.radius + p2.radius) ** 2
コード例 #41
0
ファイル: pen.py プロジェクト: christian-oudard/canoepaddle
 def last_slant_width(self):
     seg = self.last_segment()
     return vec.mag(vec.vfrom(seg.b_left, seg.b_right))
コード例 #42
0
def closest_point_to(target, points):
    return min(points, key=lambda p: vec.mag2(vec.vfrom(target, p)))
コード例 #43
0
 def turn_toward(self, point):
     v = vec.vfrom(self._position, point)
     heading = math.degrees(vec.heading(v))
     self.turn_to(heading)
コード例 #44
0
ファイル: util.py プロジェクト: christian-oudard/ithkuil
def hook(pen, slant_angle, arc_angle, distance, adjust_inside=0, adjust_outside=0):
    """
    Draw a hook shape.

    Each hook has two arcs that meet at a point, with curvature in the
    same direction. They are connected at the other end by a line, creating two
    corners. The pen starts on the left corner, pointing toward the right
    corner. The width of the pen is also used as the maximum width of the hook.

    The `slant_angle` argument is 90 degrees for a hook with a "straight" base.
    For slanted bases toward the inside corner, 0 < slant_angle < 90.
    For slanted bases toward the outside corner, 90 < slant_angle < 180.

    `arc_angle` is the arc angle of the inside arc. If `arc_angle` is negative,
    then the hook curves to the right instead.

    `distance` is the arc length along the inside arc.

    `sharp_angle` adjusts the "sharpness" i.e. acuteness of the angle of the
    hook tip. Negative angles make it "blunter".
    """
    slant_angle = Angle(slant_angle)
    arc_angle = Angle(arc_angle)

    old_mode = pen.mode
    hook_width = old_mode.width


    # The pen starts at the "middle" of the hook, a point along the base that
    # is in the middle of the inside and outside bounding circles.
    base_heading = pen.heading
    base_middle = pen.position

    # Calculate the radius.
    circumference = distance / (arc_angle.theta / 360)
    radius = circumference / (2 * math.pi)

    # Trace the inside curve to find the hook tip and some other
    # important points.
    temp_pen = pen.copy()
    temp_pen.turn_left(slant_angle)
    temp_pen.arc_left(arc_angle, radius)
    center_arc = temp_pen.last_segment()

    tip = center_arc.b
    center = center_arc.center

    # Calculate the inside and outside corner position. The outside corner is located
    # along the base line, intersecting the outer circle. The outer circle is
    # concentric to the inner arc's circle, but with radius larger by the
    # hook_width.
    v_base = vec.rotate((1, 0), base_heading.rad)
    switch_corners = (
        (slant_angle > 0 and arc_angle < 0) or
        (slant_angle < 0 and arc_angle > 0)
    )

    if switch_corners:
        v_base = vec.neg(v_base)

    base_right = vec.add(base_middle, v_base)

    points_inside = intersect_circle_line(
        center, abs(center_arc.radius) - (hook_width / 2),
        base_middle, base_right,
    )
    points_outside = intersect_circle_line(
        center, abs(center_arc.radius) + (hook_width / 2),
        base_middle, base_right,
    )

    # Take the intersection point that is the most "forward" along the base
    # from the inside corner.
    def forwardness(p):
        v_p = vec.vfrom(base_middle, p)
        return vec.dot(v_p, v_base),

    inside_corner = max(points_inside, key=forwardness)
    outside_corner = max(points_outside, key=forwardness)

    # Adjust for having started in the middle of the hook. Move to where the
    # corner of the hook is at the pen start position.
    if not switch_corners:
        offset = vec.vfrom(inside_corner, base_middle)
    else:
        offset = vec.vfrom(outside_corner, base_middle)
    inside_corner = vec.add(inside_corner, offset)
    outside_corner = vec.add(outside_corner, offset)
    tip = vec.add(tip, offset)
    center = vec.add(center, offset)

    # Draw the hook.
    pen.set_mode(old_mode.outliner_mode())
    # Base.
    pen.move_to(inside_corner)
    pen.line_to(outside_corner)
    # Outer arc.
    pen.turn_toward(center)
    if arc_angle > 0:
        pen.turn_right(90 + adjust_outside)
    else:
        pen.turn_left(90 + adjust_outside)
    pen.arc_to(tip)
    # Inner arc.
    pen.turn_to(center_arc.end_heading + 180)
    if arc_angle > 0:
        pen.turn_right(adjust_inside)
    else:
        pen.turn_left(adjust_inside)

    pen.arc_to(inside_corner)

    pen.set_mode(old_mode)
コード例 #45
0
 def _vector(self):
     return vec.vfrom(self.a, self.b)
コード例 #46
0
 def __init__(self, p1, p2, restitution=c.restitution_wall):
     self.p1 = p1
     self.p2 = p2
     self.restitution = restitution
     self.tangent = vec.vfrom(self.p1, self.p2)
     self.normal = vec.perp(self.tangent)
コード例 #47
0
 def heading(self):
     return Heading.from_rad(vec.heading(vec.vfrom(self.a, self.b)))
コード例 #48
0
def dist(a, b):
    return vec.mag(vec.vfrom(a, b))
コード例 #49
0
    def join_with_line(self, other):
        v_self = self._vector()
        v_other = other._vector()

        # Check turn angle.
        self_heading = Heading.from_rad(vec.heading(v_self))
        other_heading = Heading.from_rad(vec.heading(v_other))
        turn_angle = self_heading.angle_to(other_heading)

        # Special case equal widths.
        if(
            abs(turn_angle) <= MAX_TURN_ANGLE and
            float_equal(self.width, other.width)
        ):
            # When joints between segments of equal width are straight or
            # almost straight, the line-intersection method becomes very
            # numerically unstable, so use another method instead.

            # For each segment, get a vector perpendicular to the
            # segment, then add them. This is an angle bisector for
            # the angle of the joint.
            w_self = self._width_vector()
            w_other = other._width_vector()
            v_bisect = vec.add(w_self, w_other)

            # Make the bisector have the correct length.
            half_angle = vec.angle(v_other, v_bisect)
            v_bisect = vec.norm(
                v_bisect,
                (self.width / 2) / math.sin(half_angle)
            )

            # Determine the left and right joint spots.
            p_left = vec.add(self.b, v_bisect)
            p_right = vec.sub(self.b, v_bisect)
        else:
            a, b = self.offset_line_left()
            c, d = other.offset_line_left()
            p_left = intersect_lines(a, b, c, d)

            a, b = self.offset_line_right()
            c, d = other.offset_line_right()
            p_right = intersect_lines(a, b, c, d)

        # Make sure the joint points are "forward" from the perspective
        # of each segment.
        if p_left is not None:
            if vec.dot(vec.vfrom(self.a_left, p_left), v_self) < 0:
                p_left = None
        if p_right is not None:
            if vec.dot(vec.vfrom(self.a_right, p_right), v_self) < 0:
                p_right = None

        # Don't join the outer sides if the turn angle is too steep.
        if abs(turn_angle) > MAX_TURN_ANGLE:
            if turn_angle > 0:
                p_right = None
            else:
                p_left = None

        if p_left is not None:
            self.b_left = other.a_left = Point(*p_left)
        if p_right is not None:
            self.b_right = other.a_right = Point(*p_right)

        if p_left is None or p_right is None:
            self.end_joint_illegal = True
            other.start_joint_illegal = True
コード例 #50
0
 def heading(self):
     return Heading.from_rad(vec.heading(vec.vfrom(self.a, self.b)))