コード例 #1
0
ファイル: mnist-main.py プロジェクト: prodand/area51
def main():
    plt.ion()
    # cnn = Cnn.load("saved/cnn_12-28-2019_19-36")
    (X_train, y_train), (X_test, y_test) = mnist.load_data()

    labels = np.zeros((y_train.shape[0], 10, 1))
    for index, x in enumerate(y_train):
        labels[index, x] = [1]

    images = X_train.reshape(
        (X_train.shape[0], 1, X_train.shape[1], X_train.shape[2])) / 255
    test_images = X_test.reshape(
        (X_test.shape[0], 1, X_test.shape[1], X_test.shape[2])) / 255

    # cnn.add_layer(Conv2d(16, 5, 1))
    # cnn.add_layer(MaxPooling((16, 24, 24), 2, 2))
    # cnn.add_layer(Conv2d(32, 3, 16))
    # cnn.add_layer(MaxPooling((32, 10, 10), 2, 2))
    # cnn.add_layer(Flatten((32, 5, 5)))
    # cnn.add_layer(FullyConnected(800, 10))
    # cnn.add_layer(Softmax())

    cnn.add_layer(Conv2d(16, 5, 1))
    cnn.add_layer(MaxPooling((16, 24, 24), 2, 2))
    cnn.add_layer(Conv2d(32, 3, 16))
    cnn.add_layer(MaxPooling((32, 10, 10), 2, 2))
    cnn.add_layer(Flatten((32, 5, 5)))
    cnn.add_layer(FullyConnected(800, 128))
    cnn.add_layer(FullyConnected(128, 10))
    cnn.add_layer(Softmax())

    # cnn.add_layer(Conv2d(16, 5, 1))
    # cnn.add_layer(MaxPooling((16, 24, 24), 2, 2))
    # cnn.add_layer(Conv2d(32, 5, 16))
    # cnn.add_layer(MaxPooling((32, 8, 8), 2, 2))
    # cnn.add_layer(Flatten((32, 4, 4)))
    # cnn.add_layer(FullyConnected(512, 10))
    # cnn.add_layer(Softmax())

    # cnn.add_layer(Conv2d(32, 5, 1))
    # cnn.add_layer(MaxPooling((32, 24, 24), 2, 2))
    # cnn.add_layer(Conv2d(64, 5, 32))
    # cnn.add_layer(MaxPooling((64, 8, 8), 2, 2))
    # cnn.add_layer(Flatten((64, 4, 4)))
    # cnn.add_layer(FullyConnected(1024, 10))
    # cnn.add_layer(Softmax())

    signal.signal(signal.SIGINT, keyboard_interrupt_handler)
    print('Start learning')
    cnn.learn(images, labels)

    index = cnn.predict(test_images[0])
    print(y_test[0] + ' ' + index)
コード例 #2
0
ファイル: test_conv2d.py プロジェクト: prodand/area51
    def test_calculate_prev_layer_error_multi_feature(self):
        layer = Conv2d(2, 2, 1, [1, -1, 1, 2, 1, 2, 1, 1])

        theta = np.array((1., 0., 1., 0., 2., 0., 2., 0.)).reshape((2, 2, 2))
        res = layer.calculate_prev_layer_error(theta)
        exp = np.array([3, 3, 0, 6, 7, 0, 3, 4, 0]).reshape((1, 3, 3))
        np.testing.assert_allclose(res, exp)
コード例 #3
0
ファイル: test_conv2d.py プロジェクト: prodand/area51
 def test_calculate_prev_layer_error(self):
     layer = Conv2d(1, 2, 1, [1, -1, 1, 2])
     theta = np.array((0.5, 0.3, 0.2, 0.7)).reshape((1, 2, 2))
     res = layer.calculate_prev_layer_error(theta)
     exp = np.array([0.5, -0.2, -0.3, 0.7, 1.8, -0.1, 0.2, 1.1,
                     1.4]).reshape((1, 3, 3))
     np.testing.assert_allclose(res, exp)
コード例 #4
0
    def setUp(self) -> None:
        layers = []
        for i in range(1, 4):
            layer = Conv2d(1, 1, 1)
            layer.forward = self.mock_method(
                [np.array([i, i, i]),
                 np.array([i * 10, i * 10, i * 10])])
            layer.back = self.mock_method([
                np.array([-i, -i, -i]),
                np.array([-i * 10, -i * 10, -i * 10])
            ])
            layer.update_weights = MagicMock()
            layers.append(layer)

        self.loss_function = CrossEntropy()
        self.loss_function.loss = self.mock_method([0.1, 0.2])
        self.loss_function.delta = self.mock_method([[0.2, -0.3, 0.1],
                                                     [0.5, -0.6, 0.1]])
        self.images = np.array([
            [1, 2, 3],
            [4, 5, 6],
        ])
        self.labels = np.array([
            [1, 0, 0],
            [0, 0, 1],
        ])
        self.layers = layers
コード例 #5
0
ファイル: test_conv2d.py プロジェクト: prodand/area51
 def test_convolve_multi_channels(self):
     layer = Conv2d(3, 1, 2, [0.5, 0.5, 2, 2, 1.5, 1.5], [1, 1, 1])
     image = np.arange(1, 9).reshape((2, 2, 2))
     res = layer.convolve(image)
     exp = np.array(([[[3 + 1., 4. + 1], [5. + 1, 6. + 1]],
                      [[12. + 1, 16. + 1], [20. + 1, 24. + 1]],
                      [[9. + 1, 12. + 1], [15. + 1, 18. + 1]]]))
     np.testing.assert_array_equal(res, exp)
コード例 #6
0
ファイル: test_conv2d.py プロジェクト: prodand/area51
    def test_calculate_average_weights_derivative(self):
        layer = Conv2d(1, 2, 1, [1, -1, 1, 2])
        image = np.array(([1, 2, 1], [2, 3, 1], [2, 1, 1])).reshape((1, 3, 3))

        theta = np.array(([2, 1, 1, 0])).reshape((1, 2, 2)).astype(np.float64)
        cache_values = [
            (image, theta),
        ]
        res = layer.calculate_average_weights_derivative(cache_values)
        exp = np.array(([[6., 8.], [9., 8.]])).reshape((1, 1, 2, 2))
        np.testing.assert_array_equal(res, exp)
コード例 #7
0
ファイル: test_conv2d.py プロジェクト: prodand/area51
    def test_calculate_average_weights_derivative_multiple_features(self):
        layer = Conv2d(2, 2, 1, [1, 1, 1, 1, 1, 1, 1, 1])
        image = np.array((1, 2, 1, 2, 3, 1, 2, 1, 1)).reshape((1, 3, 3))

        theta = np.array(([
            [[1, 0], [1, 0]],
            [[0, 1], [0, 1]],
        ])).reshape((2, 2, 2))

        cache_values = [(image, theta)]
        res = layer.calculate_average_weights_derivative(cache_values)
        exp = np.array([3., 5., 4., 4., 5., 2., 4., 2.]).reshape((2, 1, 2, 2))
        np.testing.assert_allclose(res, exp)
コード例 #8
0
ファイル: test_conv2d.py プロジェクト: prodand/area51
    def test_calculate_average_weights_derivative_multichannel(self):
        layer = Conv2d(1, 2, 2, [1, 1, 1, 1, 1, 1, 1, 1])
        image = np.array(
            (1, 2, 1, 2, 3, 1, 2, 1, 1, 1, 2, 1, 0, 2, 2, 1, 1, 1)).reshape(
                (2, 3, 3))

        theta = np.array(([1, 0], [1, 0])).reshape((1, 2, 2))

        cache_values = [
            (image, theta),
        ]
        res = layer.calculate_average_weights_derivative(cache_values)
        exp = np.array([3., 5., 4., 4., 1., 4., 1., 3.]).reshape((1, 2, 2, 2))
        np.testing.assert_allclose(res, exp)
コード例 #9
0
ファイル: cnn.py プロジェクト: prodand/area51
 def str2layer(directory, line):
     switcher = {
         "Conv2d":
         lambda folder, args: Conv2d.load(folder, args),
         "FullyConnected":
         lambda folder, args: FullyConnected.load(folder, args),
         "MaxPooling":
         lambda folder, args: MaxPooling.load(folder, args),
         "Flatten":
         lambda folder, args: Flatten.load(folder, args),
         "Softmax":
         lambda folder, args: Softmax()
     }
     parts = line.rstrip().split(":")
     func = switcher.get(parts[0])
     return func(directory, parts[1])
コード例 #10
0
ファイル: test_conv2d.py プロジェクト: prodand/area51
    def test_calculate_average_biases(self):
        layer = Conv2d(2, 2, 1, [1, 1, 1, 1, 1, 1, 1, 1])
        image1 = np.array((1, 2, 1, 2, 3, 1, 2, 1, 1)).reshape((1, 3, 3))
        image2 = np.array((2, 1, 1, 2, 1, 1, 2, 2, 1)).reshape((1, 3, 3))

        theta1 = np.array(([
            [[1, 2], [1, 3]],
            [[-1, 4], [2, 1]],
        ])).reshape((2, 2, 2))

        theta2 = np.array(([
            [[2, 1], [5, 1]],
            [[1, 2], [5, 1]],
        ])).reshape((2, 2, 2))

        cache_values = [(image1, theta1), (image2, theta2)]
        res = layer.calculate_average_biases(cache_values)
        exp_bias = np.array([8.0, 7.5]).reshape((2, 1))
        np.testing.assert_allclose(res, exp_bias)
コード例 #11
0
ファイル: test_conv2d.py プロジェクト: prodand/area51
    def test_calculate_average_weights_derivative_multiple_features_batch(
            self):
        layer = Conv2d(2, 2, 1, [1, 1, 1, 1, 1, 1, 1, 1])
        image1 = np.array((1, 2, 1, 2, 3, 1, 2, 1, 1)).reshape((1, 3, 3))
        image2 = np.array((2, 1, 1, 2, 1, 1, 2, 2, 1)).reshape((1, 3, 3))

        theta1 = np.array(([
            [[1, 0], [1, 0]],
            [[0, 1], [0, 1]],
        ])).reshape((2, 2, 2))

        theta2 = np.array(([
            [[0, 1], [0, 1]],
            [[1, 0], [1, 0]],
        ])).reshape((2, 2, 2))

        cache_values = [(image1, theta1), (image2, theta2)]
        res = layer.calculate_average_weights_derivative(cache_values)
        exp = np.array([2.5, 3.5, 3.5, 3., 4.5, 2., 4., 2.5]).reshape(
            (2, 1, 2, 2))
        np.testing.assert_allclose(res, exp)
コード例 #12
0
ファイル: test_conv2d.py プロジェクト: prodand/area51
 def test_init(self):
     test = Conv2d(2, 3, 5)
     self.assertEqual(test.kernel.shape, (2, 5, 3, 3))
コード例 #13
0
ファイル: test_conv2d.py プロジェクト: prodand/area51
 def test_convolve(self):
     layer = Conv2d(2, 2, 1, [1, -1, 1, 2, 1, 0, 0, 2], [2, 3])
     image = np.arange(1, 10).reshape((1, 3, 3))
     res = layer.convolve(image)
     exp = np.array(([[[15., 18.], [24., 27.]], [[14., 17.], [23., 26.]]]))
     np.testing.assert_array_equal(res, exp)
コード例 #14
0
ファイル: test_conv2d.py プロジェクト: prodand/area51
 def test_img2vec(self):
     layer = Conv2d(1, 2, 2)
     image = np.arange(1, 33).reshape((2, 4, 4))
     res = layer.img2vec(image)
コード例 #15
0
ファイル: test_conv2d.py プロジェクト: prodand/area51
 def test_relu(self):
     layer = Conv2d(1, 2, 1, [1, -1, 1, 2])
     input = np.array(([-1, 3], [2, -1]))
     exp = np.array(([0, 3], [2, 0]))
     np.testing.assert_array_equal(layer.relu(input), exp)