def __init__( self, inputobj=None, c='RdBu_r', alpha=(0.0, 0.0, 0.2, 0.4, 0.8, 1.0), alphaGradient=None, alphaUnit=1, mode=0, shade=False, spacing=None, dims=None, origin=None, mapper='smart', ): vtk.vtkVolume.__init__(self) BaseGrid.__init__(self) ################### if isinstance(inputobj, str): if "https://" in inputobj: from vedo.io import download inputobj = download(inputobj, verbose=False) # fpath elif os.path.isfile(inputobj): pass else: inputobj = sorted(glob.glob(inputobj)) ################### if 'gpu' in mapper: self._mapper = vtk.vtkGPUVolumeRayCastMapper() elif 'opengl_gpu' in mapper: self._mapper = vtk.vtkOpenGLGPUVolumeRayCastMapper() elif 'smart' in mapper: self._mapper = vtk.vtkSmartVolumeMapper() elif 'fixed' in mapper: self._mapper = vtk.vtkFixedPointVolumeRayCastMapper() elif isinstance(mapper, vtk.vtkMapper): self._mapper = mapper else: print("Error unknown mapper type", [mapper]) raise RuntimeError() self.SetMapper(self._mapper) ################### inputtype = str(type(inputobj)) #colors.printc('Volume inputtype', inputtype) if inputobj is None: img = vtk.vtkImageData() elif utils.isSequence(inputobj): if isinstance(inputobj[0], str): # scan sequence of BMP files ima = vtk.vtkImageAppend() ima.SetAppendAxis(2) pb = utils.ProgressBar(0, len(inputobj)) for i in pb.range(): f = inputobj[i] picr = vtk.vtkBMPReader() picr.SetFileName(f) picr.Update() mgf = vtk.vtkImageMagnitude() mgf.SetInputData(picr.GetOutput()) mgf.Update() ima.AddInputData(mgf.GetOutput()) pb.print('loading...') ima.Update() img = ima.GetOutput() else: if "ndarray" not in inputtype: inputobj = np.array(inputobj) if len(inputobj.shape) == 1: varr = numpy_to_vtk(inputobj, deep=True, array_type=vtk.VTK_FLOAT) else: if len(inputobj.shape) > 2: inputobj = np.transpose(inputobj, axes=[2, 1, 0]) varr = numpy_to_vtk(inputobj.ravel(order='F'), deep=True, array_type=vtk.VTK_FLOAT) varr.SetName('input_scalars') img = vtk.vtkImageData() if dims is not None: img.SetDimensions(dims) else: if len(inputobj.shape) == 1: colors.printc( "Error: must set dimensions (dims keyword) in Volume.", c='r') raise RuntimeError() img.SetDimensions(inputobj.shape) img.GetPointData().SetScalars(varr) #to convert rgb to numpy # img_scalar = data.GetPointData().GetScalars() # dims = data.GetDimensions() # n_comp = img_scalar.GetNumberOfComponents() # temp = numpy_support.vtk_to_numpy(img_scalar) # numpy_data = temp.reshape(dims[1],dims[0],n_comp) # numpy_data = numpy_data.transpose(0,1,2) # numpy_data = np.flipud(numpy_data) elif "ImageData" in inputtype: img = inputobj elif isinstance(inputobj, Volume): img = inputobj.inputdata() elif "UniformGrid" in inputtype: img = inputobj elif hasattr( inputobj, "GetOutput"): # passing vtk object, try extract imagdedata if hasattr(inputobj, "Update"): inputobj.Update() img = inputobj.GetOutput() elif isinstance(inputobj, str): from vedo.io import loadImageData, download if "https://" in inputobj: inputobj = download(inputobj, verbose=False) img = loadImageData(inputobj) else: colors.printc("Volume(): cannot understand input type:\n", inputtype, c='r') return if dims is not None: img.SetDimensions(dims) if origin is not None: img.SetOrigin(origin) ### DIFFERENT from volume.origin()! if spacing is not None: img.SetSpacing(spacing) self._data = img self._mapper.SetInputData(img) self.mode(mode).color(c).alpha(alpha).alphaGradient(alphaGradient) self.GetProperty().SetShade(True) self.GetProperty().SetInterpolationType(1) self.GetProperty().SetScalarOpacityUnitDistance(alphaUnit) # remember stuff: self._mode = mode self._color = c self._alpha = alpha self._alphaGrad = alphaGradient self._alphaUnit = alphaUnit
def __init__(self, inputobj=None): vtk.vtkImageSlice.__init__(self) Base3DProp.__init__(self) BaseVolume.__init__(self) self._mapper = vtk.vtkImageResliceMapper() self._mapper.SliceFacesCameraOn() self._mapper.SliceAtFocalPointOn() self._mapper.SetAutoAdjustImageQuality(False) self._mapper.BorderOff() self.lut = None self.property = vtk.vtkImageProperty() self.property.SetInterpolationTypeToLinear() self.SetProperty(self.property) ################### if isinstance(inputobj, str): if "https://" in inputobj: from vedo.io import download inputobj = download(inputobj, verbose=False) # fpath elif os.path.isfile(inputobj): pass else: inputobj = sorted(glob.glob(inputobj)) ################### inputtype = str(type(inputobj)) if inputobj is None: img = vtk.vtkImageData() if isinstance(inputobj, Volume): img = inputobj.imagedata() self.lut = utils.ctf2lut(inputobj) elif utils.isSequence(inputobj): if isinstance(inputobj[0], str): # scan sequence of BMP files ima = vtk.vtkImageAppend() ima.SetAppendAxis(2) pb = utils.ProgressBar(0, len(inputobj)) for i in pb.range(): f = inputobj[i] picr = vtk.vtkBMPReader() picr.SetFileName(f) picr.Update() mgf = vtk.vtkImageMagnitude() mgf.SetInputData(picr.GetOutput()) mgf.Update() ima.AddInputData(mgf.GetOutput()) pb.print('loading...') ima.Update() img = ima.GetOutput() else: if "ndarray" not in inputtype: inputobj = np.array(inputobj) if len(inputobj.shape) == 1: varr = utils.numpy2vtk(inputobj, dtype=float) else: if len(inputobj.shape) > 2: inputobj = np.transpose(inputobj, axes=[2, 1, 0]) varr = utils.numpy2vtk(inputobj.ravel(order='F'), dtype=float) varr.SetName('input_scalars') img = vtk.vtkImageData() img.SetDimensions(inputobj.shape) img.GetPointData().AddArray(varr) img.GetPointData().SetActiveScalars(varr.GetName()) elif "ImageData" in inputtype: img = inputobj elif isinstance(inputobj, Volume): img = inputobj.inputdata() elif "UniformGrid" in inputtype: img = inputobj elif hasattr( inputobj, "GetOutput"): # passing vtk object, try extract imagdedata if hasattr(inputobj, "Update"): inputobj.Update() img = inputobj.GetOutput() elif isinstance(inputobj, str): from vedo.io import loadImageData, download if "https://" in inputobj: inputobj = download(inputobj, verbose=False) img = loadImageData(inputobj) else: colors.printc("VolumeSlice: cannot understand input type:\n", inputtype, c='r') return self._data = img self._mapper.SetInputData(img) self.SetMapper(self._mapper)