コード例 #1
0
 def _output_records(self, step_name, records):
     """Dump records."""
     columns = ["worker_id", "performance", "desc"]
     outputs = []
     for record in records:
         record = record.serialize()
         _record = {}
         for key in columns:
             _record[key] = record[key]
         outputs.append(deepcopy(_record))
     data = pd.DataFrame(outputs)
     step_path = FileOps.join_path(TaskOps().local_output_path, step_name)
     FileOps.make_dir(step_path)
     _file = FileOps.join_path(step_path, "output.csv")
     try:
         data.to_csv(_file, index=False)
     except Exception:
         logging.error("Failed to save output file, file={}".format(_file))
     for record in outputs:
         worker_id = record["worker_id"]
         worker_path = TaskOps().get_local_worker_path(step_name, worker_id)
         outputs_globs = []
         outputs_globs += glob.glob(FileOps.join_path(worker_path, "desc_*.json"))
         outputs_globs += glob.glob(FileOps.join_path(worker_path, "hps_*.json"))
         outputs_globs += glob.glob(FileOps.join_path(worker_path, "model_*"))
         outputs_globs += glob.glob(FileOps.join_path(worker_path, "performance_*.json"))
         for _file in outputs_globs:
             if os.path.isfile(_file):
                 FileOps.copy_file(_file, step_path)
             elif os.path.isdir(_file):
                 FileOps.copy_folder(_file, FileOps.join_path(step_path, os.path.basename(_file)))
コード例 #2
0
ファイル: model_builder.py プロジェクト: huawei-noah/vega
 def _get_model_desc(self):
     model_desc = self.trainer.model_desc
     if not model_desc:
         if ModelConfig.model_desc_file is not None:
             desc_file = ModelConfig.model_desc_file
             desc_file = desc_file.replace("{local_base_path}",
                                           self.trainer.local_base_path)
             if ":" not in desc_file:
                 desc_file = os.path.abspath(desc_file)
             if ":" in desc_file:
                 local_desc_file = FileOps.join_path(
                     self.trainer.local_output_path,
                     os.path.basename(desc_file))
                 FileOps.copy_file(desc_file, local_desc_file)
                 desc_file = local_desc_file
             model_desc = Config(desc_file)
             logger.info("net_desc:{}".format(model_desc))
         elif ModelConfig.model_desc is not None:
             model_desc = ModelConfig.model_desc
         elif ModelConfig.models_folder is not None:
             folder = ModelConfig.models_folder.replace(
                 "{local_base_path}", self.trainer.local_base_path)
             pattern = FileOps.join_path(folder, "desc_*.json")
             desc_file = glob.glob(pattern)[0]
             model_desc = Config(desc_file)
     return model_desc
コード例 #3
0
    def _new_model_init(self):
        """Init new model.

        :return: initial model after loading pretrained model
        :rtype: torch.nn.Module
        """
        init_model_file = self.config.init_model_file
        if ":" in init_model_file:
            local_path = FileOps.join_path(
                self.trainer.get_local_worker_path(),
                os.path.basename(init_model_file))
            FileOps.copy_file(init_model_file, local_path)
            self.config.init_model_file = local_path
        network_desc = copy.deepcopy(self.base_net_desc)
        network_desc.backbone.cfgs = network_desc.backbone.base_cfgs
        model_init = NetworkDesc(network_desc).to_model()
        return model_init
コード例 #4
0
 def _save_descript(self):
     """Save result descript."""
     template_file = self.config.darts_template_file
     genotypes = self.search_alg.codec.calc_genotype(
         self._get_arch_weights())
     if template_file == "{default_darts_cifar10_template}":
         template = DartsNetworkTemplateConfig.cifar10
     elif template_file == "{default_darts_cifar100_template}":
         template = DartsNetworkTemplateConfig.cifar100
     elif template_file == "{default_darts_imagenet_template}":
         template = DartsNetworkTemplateConfig.imagenet
     else:
         dst = FileOps.join_path(self.trainer.get_local_worker_path(),
                                 os.path.basename(template_file))
         FileOps.copy_file(template_file, dst)
         template = Config(dst)
     model_desc = self._gen_model_desc(genotypes, template)
     self.trainer.config.codec = model_desc
コード例 #5
0
    def _get_model_desc(self):
        model_desc = self.model_desc
        self.saved_folder = self.get_local_worker_path(self.step_name,
                                                       self.worker_id)
        if not model_desc:
            if os.path.exists(
                    FileOps.join_path(self.saved_folder,
                                      'desc_{}.json'.format(self.worker_id))):
                model_config = Config(
                    FileOps.join_path(self.saved_folder,
                                      'desc_{}.json'.format(self.worker_id)))
                if "type" not in model_config and "modules" not in model_config:
                    model_config = ModelConfig.model_desc
                model_desc = model_config
            elif ModelConfig.model_desc_file is not None:
                desc_file = ModelConfig.model_desc_file
                desc_file = desc_file.replace("{local_base_path}",
                                              self.local_base_path)
                if ":" not in desc_file:
                    desc_file = os.path.abspath(desc_file)
                if ":" in desc_file:
                    local_desc_file = FileOps.join_path(
                        self.local_output_path, os.path.basename(desc_file))
                    FileOps.copy_file(desc_file, local_desc_file)
                    desc_file = local_desc_file
                model_desc = Config(desc_file)
                logger.info("net_desc:{}".format(model_desc))
            elif ModelConfig.model_desc is not None:
                model_desc = ModelConfig.model_desc
            elif ModelConfig.models_folder is not None:
                folder = ModelConfig.models_folder.replace(
                    "{local_base_path}", self.local_base_path)
                pattern = FileOps.join_path(folder, "desc_*.json")
                desc_file = glob.glob(pattern)[0]
                model_desc = Config(desc_file)

            elif PipeStepConfig.pipe_step.get("models_folder") is not None:
                folder = PipeStepConfig.pipe_step.get("models_folder").replace(
                    "{local_base_path}", self.local_base_path)
                desc_file = FileOps.join_path(
                    folder, "desc_{}.json".format(self.worker_id))
                model_desc = Config(desc_file)
                logger.info("Load model from model folder {}.".format(folder))
        return model_desc
コード例 #6
0
ファイル: adelaide_mutate.py プロジェクト: huawei-noah/vega
 def _copy_needed_file(self):
     if self.config.pareto_front_file is None:
         raise FileNotFoundError(
             "Config item paretor_front_file not found in config file.")
     init_pareto_front_file = self.config.pareto_front_file.replace(
         "{local_base_path}", self.local_base_path)
     self.pareto_front_file = FileOps.join_path(self.local_output_path,
                                                self.step_name,
                                                "pareto_front.csv")
     FileOps.make_base_dir(self.pareto_front_file)
     FileOps.copy_file(init_pareto_front_file, self.pareto_front_file)
     if self.config.random_file is None:
         raise FileNotFoundError(
             "Config item random_file not found in config file.")
     init_random_file = self.config.random_file.replace(
         "{local_base_path}", self.local_base_path)
     self.random_file = FileOps.join_path(self.local_output_path,
                                          self.step_name, "random.csv")
     FileOps.copy_file(init_random_file, self.random_file)
コード例 #7
0
ファイル: model_builder.py プロジェクト: huawei-noah/vega
 def _get_pretrained_model_file(self):
     if not self.trainer.load_weights_file:
         return None
     model_file = self.trainer.config.kwargs.get("pretrained_model_file")
     if model_file:
         return model_file
     if ModelConfig.pretrained_model_file:
         model_file = ModelConfig.pretrained_model_file
         model_file = model_file.replace("{local_base_path}",
                                         self.trainer.local_base_path)
         model_file = model_file.replace("{worker_id}",
                                         str(self.trainer.worker_id))
         if ":" not in model_file:
             model_file = os.path.abspath(model_file)
         if ":" in model_file:
             local_model_file = FileOps.join_path(
                 self.trainer.local_output_path,
                 os.path.basename(model_file))
             FileOps.copy_file(model_file, local_model_file)
             model_file = local_model_file
         return model_file
     else:
         return None
コード例 #8
0
ファイル: model_checkpoint.py プロジェクト: huawei-noah/vega
 def _save_best_model(self):
     """Save best model."""
     if vega.is_torch_backend():
         torch.save(self.trainer.model.state_dict(),
                    self.trainer.weights_file)
     elif vega.is_tf_backend():
         worker_path = self.trainer.get_local_worker_path()
         model_id = "model_{}".format(self.trainer.worker_id)
         weights_folder = FileOps.join_path(worker_path, model_id)
         FileOps.make_dir(weights_folder)
         checkpoint_file = tf.train.latest_checkpoint(worker_path)
         ckpt_globs = glob.glob("{}.*".format(checkpoint_file))
         for _file in ckpt_globs:
             FileOps.copy_file(
                 _file,
                 FileOps.join_path(weights_folder,
                                   os.path.split(_file)[-1]))
         FileOps.copy_file(FileOps.join_path(worker_path, 'checkpoint'),
                           weights_folder)
         if self.trainer.save_ext_model:
             self._save_pb_model(weights_folder, model_id)
             self.trainer.ext_model = FileOps.join_path(
                 weights_folder, '{}.pb'.format(model_id))
     elif vega.is_ms_backend():
         worker_path = self.trainer.get_local_worker_path()
         save_path = os.path.join(
             worker_path, "model_{}.ckpt".format(self.trainer.worker_id))
         for file in os.listdir(worker_path):
             if file.startswith("CKP") and file.endswith(".ckpt"):
                 self.weights_file = FileOps.join_path(worker_path, file)
                 os.rename(self.weights_file, save_path)
         if self.trainer.save_ext_model:
             model_id = "model_{}".format(self.trainer.worker_id)
             self._save_om_model(worker_path, model_id)
             self.trainer.ext_model = FileOps.join_path(
                 worker_path, '{}.om'.format(model_id))