コード例 #1
0
 def post_milp(self, x, nn, output_flag, t, template):
     """milp method"""
     post = []
     for chosen_action in range(2):
         gurobi_model = grb.Model()
         gurobi_model.setParam('OutputFlag', output_flag)
         gurobi_model.setParam('Threads', 2)
         input = Experiment.generate_input_region(gurobi_model, template, x,
                                                  self.env_input_size)
         max_theta, min_theta, max_theta_dot, min_theta_dot = self.get_theta_bounds(
             gurobi_model, input)
         sin_cos_table = self.get_sin_cos_table(max_theta,
                                                min_theta,
                                                max_theta_dot,
                                                min_theta_dot,
                                                action=chosen_action)
         feasible_action = CartpoleExperiment.generate_nn_guard(
             gurobi_model, input, nn, action_ego=chosen_action)
         if feasible_action:
             thetaacc, xacc = CartpoleExperiment.generate_angle_milp(
                 gurobi_model, input, sin_cos_table)
             # apply dynamic
             x_prime = self.apply_dynamic(
                 input,
                 gurobi_model,
                 thetaacc=thetaacc,
                 xacc=xacc,
                 env_input_size=self.env_input_size)
             gurobi_model.update()
             gurobi_model.optimize()
             found_successor, x_prime_results = self.h_repr_to_plot(
                 gurobi_model, template, x_prime)
             if found_successor:
                 post.append(tuple(x_prime_results))
     return post
コード例 #2
0
    def post_milp(self, x, nn, output_flag, t, template):
        """milp method"""
        post = []
        for chosen_action in range(2):
            observable_template = self.observable_templates[chosen_action]
            observable_result = self.observable_results[chosen_action]
            gurobi_model = grb.Model()
            gurobi_model.setParam('OutputFlag', output_flag)
            gurobi_model.setParam('Threads', 2)
            input = Experiment.generate_input_region(gurobi_model, template, x,
                                                     self.env_input_size)
            observation = gurobi_model.addMVar(shape=(2, ),
                                               lb=float("-inf"),
                                               ub=float("inf"),
                                               name="input")
            gurobi_model.addConstr(
                observation[1] <= input[0] - input[1] + self.input_epsilon / 2,
                name=f"obs_constr21")
            gurobi_model.addConstr(
                observation[1] >= input[0] - input[1] - self.input_epsilon / 2,
                name=f"obs_constr22")
            gurobi_model.addConstr(
                observation[0] <= input[2] - input[3] + self.input_epsilon / 2,
                name=f"obs_constr11")
            gurobi_model.addConstr(
                observation[0] >= input[2] - input[3] - self.input_epsilon / 2,
                name=f"obs_constr12")
            # feasible_action = Experiment.generate_nn_guard(gurobi_model, observation, nn, action_ego=chosen_action)
            # feasible_action = Experiment.generate_nn_guard(gurobi_model, input, nn, action_ego=chosen_action)

            Experiment.generate_region_constraints(gurobi_model,
                                                   observable_template,
                                                   observation,
                                                   observable_result, 2)
            gurobi_model.optimize()
            feasible_action = gurobi_model.status == 2
            if feasible_action:
                # apply dynamic
                # x_prime_results = self.optimise(template, gurobi_model, input)  # h representation
                # x_prime = Experiment.generate_input_region(gurobi_model, template, x_prime_results, self.env_input_size)
                x_second = StoppingCarExperiment.apply_dynamic(
                    input,
                    gurobi_model,
                    action=chosen_action,
                    env_input_size=self.env_input_size)
                gurobi_model.update()
                gurobi_model.optimize()
                found_successor, x_second_results = self.h_repr_to_plot(
                    gurobi_model, template, x_second)
                if found_successor:
                    post.append(tuple(x_second_results))
        return post
コード例 #3
0
    def post_milp(self, x, nn, output_flag, t, template):
        """milp method"""
        post = []
        for chosen_action in range(2):
            observable_template = self.observable_templates[chosen_action]
            observable_result = self.observable_results[chosen_action]
            if USE_GUROBI:
                gurobi_model = grb.Model()
                gurobi_model.setParam('OutputFlag', output_flag)
                gurobi_model.setParam('Threads', 2)
                input = Experiment.generate_input_region(
                    gurobi_model, template, x, self.env_input_size)
                Experiment.generate_region_constraints(
                    gurobi_model,
                    observable_template,
                    input,
                    observable_result,
                    env_input_size=self.env_input_size)
                gurobi_model.optimize()
                feasible_action = gurobi_model.status == 2
                if feasible_action:
                    max_theta, min_theta, max_theta_dot, min_theta_dot = self.get_theta_bounds(
                        gurobi_model, input)
                    sin_cos_table = self.get_sin_cos_table(
                        max_theta,
                        min_theta,
                        max_theta_dot,
                        min_theta_dot,
                        action=chosen_action,
                        step_thetaacc=100)
                    x_prime_results = self.optimise(template, gurobi_model,
                                                    input)  # h representation
                    x_prime = Experiment.generate_input_region(
                        gurobi_model, template, x_prime_results,
                        self.env_input_size)
                    thetaacc, xacc = CartpoleExperiment.generate_angle_milp(
                        gurobi_model, x_prime, sin_cos_table)
                    # apply dynamic
                    x_second = self.apply_dynamic(
                        x_prime,
                        gurobi_model,
                        thetaacc=thetaacc,
                        xacc=xacc,
                        env_input_size=self.env_input_size)
                    gurobi_model.update()
                    gurobi_model.optimize()
                    found_successor, x_second_results = self.h_repr_to_plot(
                        gurobi_model, template, x_second)
                    if found_successor:
                        post.append(tuple(x_second_results))
            else:
                model = pyo.ConcreteModel()
                input = Experiment.generate_input_region_pyo(
                    model, template, x, self.env_input_size)
                feasible_action = ORACartpoleExperiment.generate_nn_guard_pyo(
                    model, input, nn, action_ego=chosen_action, M=1e04)
                if feasible_action:  # performs action 2 automatically when battery is dead
                    max_theta, min_theta, max_theta_dot, min_theta_dot = self.get_theta_bounds_pyo(
                        model, input)
                    sin_cos_table = self.get_sin_cos_table(
                        max_theta,
                        min_theta,
                        max_theta_dot,
                        min_theta_dot,
                        action=chosen_action,
                        step_thetaacc=100)
                    x_prime_results = self.optimise_pyo(template, model, input)
                    x_prime = Experiment.generate_input_region_pyo(
                        model,
                        template,
                        x_prime_results,
                        self.env_input_size,
                        name="x_prime_input")
                    thetaacc, xacc = ORACartpoleExperiment.generate_angle_milp_pyo(
                        model, x_prime, sin_cos_table)

                    model.del_component(model.obj)
                    model.obj = pyo.Objective(expr=thetaacc,
                                              sense=pyo.maximize)
                    result = Experiment.solve(model,
                                              solver=Experiment.use_solver)
                    assert (result.solver.status == SolverStatus.ok) and (
                        result.solver.termination_condition
                        == TerminationCondition.optimal
                    ), f"LP wasn't optimally solved {x}"
                    # apply dynamic
                    x_second = self.apply_dynamic_pyo(
                        x_prime,
                        model,
                        thetaacc=thetaacc,
                        xacc=xacc,
                        env_input_size=self.env_input_size,
                        action=chosen_action)
                    x_second_results = self.optimise_pyo(
                        template, model, x_second)
                    found_successor = x_prime_results is not None
                    if found_successor:
                        post.append((tuple(x_second_results)))
        return post