def amazon_vd(base): from verticapy.datasets import load_amazon amazon = load_amazon(cursor=base.cursor) yield amazon with warnings.catch_warnings(record=True) as w: drop(name="public.titanic", cursor=base.cursor)
def iris_vd(base): from verticapy.datasets import load_iris iris = load_iris(cursor=base.cursor) yield iris with warnings.catch_warnings(record=True) as w: drop(name="public.iris", cursor=base.cursor)
def winequality_vd(base): from verticapy.datasets import load_winequality winequality = load_winequality(cursor=base.cursor) yield winequality with warnings.catch_warnings(record=True) as w: drop(name="public.winequality", cursor=base.cursor)
def tr_data_vd(base): base.cursor.execute("DROP TABLE IF EXISTS public.tr_data") base.cursor.execute( 'CREATE TABLE IF NOT EXISTS public.tr_data(Id INT, transportation INT, gender VARCHAR, "owned cars" INT, cost VARCHAR, income CHAR(4))' ) base.cursor.execute( "INSERT INTO tr_data VALUES (1, 0, 'Male', 0, 'Cheap', 'Low')") base.cursor.execute( "INSERT INTO tr_data VALUES (2, 0, 'Male', 1, 'Cheap', 'Med')") base.cursor.execute( "INSERT INTO tr_data VALUES (3, 1, 'Female', 1, 'Cheap', 'Med')") base.cursor.execute( "INSERT INTO tr_data VALUES (4, 0, 'Female', 0, 'Cheap', 'Low')") base.cursor.execute( "INSERT INTO tr_data VALUES (5, 0, 'Male', 1, 'Cheap', 'Med')") base.cursor.execute( "INSERT INTO tr_data VALUES (6, 1, 'Male', 0, 'Standard', 'Med')") base.cursor.execute( "INSERT INTO tr_data VALUES (7, 1, 'Female', 1, 'Standard', 'Med')") base.cursor.execute( "INSERT INTO tr_data VALUES (8, 2, 'Female', 1, 'Expensive', 'Hig')") base.cursor.execute( "INSERT INTO tr_data VALUES (9, 2, 'Male', 2, 'Expensive', 'Med')") base.cursor.execute( "INSERT INTO tr_data VALUES (10, 2, 'Female', 2, 'Expensive', 'Hig')") base.cursor.execute("COMMIT") tr_data = vDataFrame(input_relation="public.tr_data", cursor=base.cursor) yield tr_data with warnings.catch_warnings(record=True) as w: drop(name="public.tr_data", cursor=base.cursor)
def titanic_vd(base): from verticapy.datasets import load_titanic titanic = load_titanic(cursor=base.cursor) yield titanic with warnings.catch_warnings(record=True) as w: drop(name="public.titanic", cursor=base.cursor)
def smart_meters_vd(base): from verticapy.datasets import load_smart_meters smart_meters = load_smart_meters(cursor=base.cursor) yield smart_meters with warnings.catch_warnings(record=True) as w: drop(name="public.smart_meters", cursor=base.cursor)
def commodities_vd(base): from verticapy.datasets import load_commodities commodities = load_commodities(cursor=base.cursor) yield commodities with warnings.catch_warnings(record=True) as w: drop(name="public.commodities", cursor=base.cursor)
def market_vd(base): from verticapy.datasets import load_market market = load_market(cursor=base.cursor) yield market with warnings.catch_warnings(record=True) as w: drop( name="public.market", cursor=base.cursor, )
def amazon_vd(base): from verticapy.datasets import load_amazon amazon = load_amazon(cursor=base.cursor) yield amazon drop( name="public.amazon", cursor=base.cursor, )
def iris_vd(base): from verticapy.datasets import load_iris iris = load_iris(cursor=base.cursor) yield iris drop( name="public.iris", cursor=base.cursor, )
def commodities_vd(base): from verticapy.datasets import load_commodities commodities = load_commodities(cursor=base.cursor) yield commodities drop( name="public.commodities", cursor=base.cursor, )
def airline_vd(base): from verticapy.datasets import load_airline_passengers airline = load_airline_passengers(cursor=base.cursor) yield airline with warnings.catch_warnings(record=True) as w: drop( name="public.airline_passengers", cursor=base.cursor, )
def gapminder_vd(base): from verticapy.datasets import load_gapminder gapminder = load_gapminder(cursor=base.cursor) yield gapminder with warnings.catch_warnings(record=True) as w: drop( name="public.gapminder", cursor=base.cursor, )
def pop_growth_vd(base): from verticapy.datasets import load_pop_growth pop_growth = load_pop_growth(cursor=base.cursor) yield pop_growth with warnings.catch_warnings(record=True) as w: drop( name="public.pop_growth", cursor=base.cursor, )
def world_vd(base): from verticapy.datasets import load_world cities = load_world(cursor=base.cursor) yield cities with warnings.catch_warnings(record=True) as w: drop( name="public.world", cursor=base.cursor, )
def test_create_verticapy_schema(self, base): with warnings.catch_warnings(record=True) as w: drop("verticapy", base.cursor, method="schema") create_verticapy_schema(base.cursor) base.cursor.execute( "SELECT table_name FROM columns WHERE table_schema = 'verticapy' GROUP BY 1 ORDER BY 1;" ) result = [elem[0] for elem in base.cursor.fetchall()] assert result == ["attr", "models"] drop("verticapy", base.cursor, method="schema")
def test_vDF_to_shp(self, cities_vd): drop(name="public.cities_test") cities_vd.to_shp("cities_test", "/home/dbadmin/", shape="Point") vdf = read_shp("/home/dbadmin/cities_test.shp") assert vdf.shape() == (202, 3) try: os.remove("/home/dbadmin/cities_test.shp") os.remove("/home/dbadmin/cities_test.shx") os.remove("/home/dbadmin/cities_test.dbf") except: pass drop(name="public.cities_test")
def test_read_json(self, base): with warnings.catch_warnings(record=True) as w: drop( "public.titanic_verticapy_test", base.cursor, ) result = read_json( os.path.dirname(verticapy.__file__) + "/tests/utilities/titanic-passengers.json", base.cursor, table_name="titanic_verticapy_test", schema="public", ) assert result.shape() == (891, 15) drop("titanic_verticapy_test", base.cursor) with warnings.catch_warnings(record=True) as w: drop( "v_temp_schema.titanic_verticapy_test", base.cursor, ) result = read_json( os.path.dirname(verticapy.__file__) + "/tests/utilities/titanic-passengers.json", base.cursor, table_name="titanic_verticapy_test", ) assert result.shape() == (891, 15) drop("v_temp_schema.titanic_verticapy_test", base.cursor)
def test_pandas_to_vertica(self, titanic_vd): df = titanic_vd.to_pandas() with warnings.catch_warnings(record=True) as w: drop( "titanic_pandas", titanic_vd._VERTICAPY_VARIABLES_["cursor"], ) vdf = pandas_to_vertica( df=df, cursor=titanic_vd._VERTICAPY_VARIABLES_["cursor"], ) assert vdf.shape() == (1234, 14) drop( "titanic_pandas", titanic_vd._VERTICAPY_VARIABLES_["cursor"], )
def test_cochrane_orcutt(self, airline_vd): airline_copy = airline_vd.copy() airline_copy["passengers_bias"] = (airline_copy["passengers"]**2 - 50 * st.random()) drop("lin_cochrane_orcutt_model_test", method="model") model = LinearRegression("lin_cochrane_orcutt_model_test") model.fit(airline_copy, ["passengers_bias"], "passengers") result = st.cochrane_orcutt( model, airline_copy, ts="date", prais_winsten=True, ) assert result.coef_["coefficient"][0] == pytest.approx( 25.8582027191416, 1e-2) assert result.coef_["coefficient"][1] == pytest.approx( 0.00123563974547625, 1e-2) model.drop()
def bsk_data_vd(base): base.cursor.execute("DROP TABLE IF EXISTS public.bsk_data") base.cursor.execute( "CREATE TABLE IF NOT EXISTS public.bsk_data(Id INT, col1 FLOAT, col2 FLOAT, col3 FLOAT, col4 FLOAT)" ) base.cursor.execute("INSERT INTO bsk_data VALUES (1, 7.2, 3.6, 6.1, 2.5)") base.cursor.execute("INSERT INTO bsk_data VALUES (2, 7.7, 2.8, 6.7, 2.0)") base.cursor.execute("INSERT INTO bsk_data VALUES (3, 7.7, 3.0, 6.1, 2.3)") base.cursor.execute("INSERT INTO bsk_data VALUES (4, 7.9, 3.8, 6.4, 2.0)") base.cursor.execute("INSERT INTO bsk_data VALUES (5, 4.4, 2.9, 1.4, 0.2)") base.cursor.execute("INSERT INTO bsk_data VALUES (6, 4.6, 3.6, 1.0, 0.2)") base.cursor.execute("INSERT INTO bsk_data VALUES (7, 4.7, 3.2, 1.6, 0.2)") base.cursor.execute("INSERT INTO bsk_data VALUES (8, 6.5, 2.8, 4.6, 1.5)") base.cursor.execute("INSERT INTO bsk_data VALUES (9, 6.8, 2.8, 4.8, 1.4)") base.cursor.execute("INSERT INTO bsk_data VALUES (10, 7.0, 3.2, 4.7, 1.4)") base.cursor.execute("COMMIT") bsk_data = vDataFrame(input_relation="public.bsk_data", cursor=base.cursor) yield bsk_data with warnings.catch_warnings(record=True) as w: drop(name="public.bsk_data", cursor=base.cursor)
def test_vDF_to_shp(self, cities_vd): with warnings.catch_warnings(record=True) as w: drop( name="public.cities_test", cursor=cities_vd._VERTICAPY_VARIABLES_["cursor"], ) cities_vd.to_shp("cities_test", "/home/dbadmin/", shape="Point") vdf = read_shp("/home/dbadmin/cities_test.shp", cities_vd._VERTICAPY_VARIABLES_["cursor"]) assert vdf.shape() == (202, 3) try: os.remove("/home/dbadmin/cities_test.shp") os.remove("/home/dbadmin/cities_test.shx") os.remove("/home/dbadmin/cities_test.dbf") except: pass with warnings.catch_warnings(record=True) as w: drop( name="public.cities_test", cursor=cities_vd._VERTICAPY_VARIABLES_["cursor"], )
def test_read_csv(self, base): with warnings.catch_warnings(record=True) as w: drop( "public.titanic_verticapy_test", base.cursor, ) result = read_csv(os.path.dirname(verticapy.__file__) + "/data/titanic.csv", base.cursor, table_name="titanic_verticapy_test", schema="public") assert result.shape() == (1234, 14) with warnings.catch_warnings(record=True) as w: drop( "v_temp_schema.titanic_verticapy_test", base.cursor, ) result = read_csv( os.path.dirname(verticapy.__file__) + "/data/titanic.csv", base.cursor, table_name="titanic_verticapy_test", ) assert result.shape() == (1234, 14) drop("titanic_verticapy_test", base.cursor)
def bsk_data_vd(): bsk_data = load_dataset_num(table_name="bsk_data", schema="public") yield bsk_data drop(name="public.bsk_data", method="table")
def winequality_vd(): winequality = load_winequality() yield winequality drop(name="public.winequality", )
def winequality_vd(base): from verticapy.datasets import load_winequality winequality = load_winequality(cursor=base.cursor) yield winequality drop(name="public.winequality", cursor=base.cursor)
def amazon_vd(): amazon = load_amazon() yield amazon drop(name="public.amazon")
def iris_vd(): iris = load_iris() yield iris drop(name="public.iris", )
def titanic_vd(): titanic = load_titanic() yield titanic drop(name="public.titanic")
def market_vd(): market = load_market() yield market drop(name="public.market")