def n_power_vespa(st, s, baz, n, winlen): ''' Returns the nth root power vespa (i.e. the power in the nth root stack) for a seismic array, for a beam of given slowness and backazimuth. Parameters ---------- st : ObsPy Stream object Stream of SAC format seismograms for the seismic array, length K = no. of stations in array s : float Magnitude of slowness vector, in s / km baz : float Backazimuth of slowness vector, (i.e. angle from North back to epicentre of event) n : int Order of the nth root process winlen : int Length of Hann window over which to calculate the power. Returns ------- power : NumPy array The power of the nth root stack at the given slowness and backazimuth, as a time series. ''' amplitude = nth_root_stack(st, s, baz, n) power = np.convolve(amplitude**2, np.hanning(winlen), mode='same') return power
def vespagram_backazimuth(st, s, bazmin, bazmax, bazsteps, winlen, stat='power', n=1): ''' Calculates the vespagram for a seismic array over a given range of backazimuths, for a single scalar slowness, using the statistic specified. The chosen statistic is calculated as a function of time (in s) and backazimuth (in deg). This may be:- * 'amplitude' - the raw amplitude of the linear or nth root stack at each time and slowness step; * 'power' - the power in the linear or nth root beam calculated over a time window (length winlen) around each time step for each slowness; * 'F' - the F-statistic of the beam calculated over a time window (length winlen) around each time step for each slowness. Parameters ---------- st : ObsPy Stream object Stream of SAC format seismograms for the seismic array, length K = no. of stations in array s : float Magnitude of the slowness vector, in s/km bazmin : float Minimum backazimuth, in degrees bazmax : float Maximum backazimuth, in degrees bazsteps : int Integer number of steps between bazmin and bazmax for which to calculate the vespagram winlen : int Length of Hann window over which to calculate the power. stat : string Statistic to use for plotting the vespagram, either 'amplitude', 'power', or 'F' Returns ------- vespagram_data : NumPy array Array of values for the chosen statistic at each backazimuth and time step. Dimensions: bazsteps*len(tr) for traces tr in st. ''' if stat == 'amplitude': vespagram_data = np.array([ nth_root_stack(st, s, baz, n) for baz in np.linspace(bazmin, bazmax, bazsteps) ]) elif stat == 'power': vespagram_data = np.array([ n_power_vespa(st, s, baz, n, winlen) for baz in np.linspace(bazmin, bazmax, bazsteps) ]) elif stat == 'F': vespagram_data = np.array([ f_vespa(st, s, baz, winlen) for baz in np.linspace(bazmin, bazmax, bazsteps) ]) else: raise AssertionError( "'stat' argument must be one of 'amplitude', 'power' or 'F'") return vespagram_data
def n_power_vespa(st, s, baz, n, winlen): """ Returns the nth root power vespa (i.e. the power in the nth root stack) for a seismic array, for a beam of given slowness and backazimuth. Parameters ---------- st : ObsPy Stream object Stream of SAC format seismograms for the seismic array, length K = no. of stations in array s : float Magnitude of slowness vector, in s / km baz : float Backazimuth of slowness vector, (i.e. angle from North back to epicentre of event) n : int Order of the nth root process winlen : int Length of Hann window over which to calculate the power. Returns ------- power : NumPy array The power of the nth root stack at the given slowness and backazimuth, as a time series. """ amplitude = nth_root_stack(st, s, baz, n) power = np.convolve(amplitude ** 2, np.hanning(winlen), mode="same") return power
def vespagram(st, smin, smax, ssteps, baz, winlen, stat='power', n=1): ''' Calculates the vespagram for a seismic array over a given slowness range, for a single backazimuth, using the statistic specified. The chosen statistic is calculated as a function of time (in s) and slowness (in s/km). This may be:- * 'amplitude' - the raw amplitude of the linear or nth root stack at each time and slowness step; * 'power' - the power in the linear or nth root beam calculated over a time window (length winlen) around each time step for each slowness; * 'F' - the F-statistic of the beam calculated over a time window (length winlen) around each time step for each slowness. Parameters ---------- st : ObsPy Stream object Stream of SAC format seismograms for the seismic array, length K = no. of stations in array smin : float Minimum magnitude of slowness vector, in s / km smax : float Maximum magnitude of slowness vector, in s / km ssteps : int Integer number of steps between smin and smax for which to calculate the vespagram baz : float Backazimuth of slowness vector, (i.e. angle from North back to epicentre of event) winlen : int Length of Hann window over which to calculate the power. stat : string Statistic to use for plotting the vespagram, either 'amplitude', 'power', or 'F' Returns ------- vespagram_data : NumPy array Array of values for the chosen statistic at each slowness and time step. Dimensions: ssteps*len(tr) for traces tr in st. ''' assert stat == 'amplitude' or stat == 'power' or stat == 'F', "'stat' argument must be one of 'amplitude', 'power' or 'F'" vespagram_data = np.array([]) try: if stat == 'amplitude': vespagram_data = np.array([ nth_root_stack(st, s, baz, n) for s in np.linspace(smin, smax, ssteps) ]) elif stat == 'power': vespagram_data = np.array([ n_power_vespa(st, s, baz, n, winlen) for s in np.linspace(smin, smax, ssteps) ]) elif stat == 'F': vespagram_data = np.array([ f_vespa(st, s, baz, winlen) for s in np.linspace(smin, smax, ssteps) ]) except AssertionError as err: raise err return vespagram_data
def vespagram(st, smin, smax, ssteps, baz, winlen, stat='power', n=1): ''' Calculates the vespagram for a seismic array over a given slowness range, for a single backazimuth, using the statistic specified. The chosen statistic is calculated as a function of time (in s) and slowness (in s/km). This may be:- * 'amplitude' - the raw amplitude of the linear or nth root stack at each time and slowness step; * 'power' - the power in the linear or nth root beam calculated over a time window (length winlen) around each time step for each slowness; * 'F' - the F-statistic of the beam calculated over a time window (length winlen) around each time step for each slowness. Parameters ---------- st : ObsPy Stream object Stream of SAC format seismograms for the seismic array, length K = no. of stations in array smin : float Minimum magnitude of slowness vector, in s / km smax : float Maximum magnitude of slowness vector, in s / km ssteps : int Integer number of steps between smin and smax for which to calculate the vespagram baz : float Backazimuth of slowness vector, (i.e. angle from North back to epicentre of event) winlen : int Length of Hann window over which to calculate the power. stat : string Statistic to use for plotting the vespagram, either 'amplitude', 'power', or 'F' Returns ------- vespagram_data : NumPy array Array of values for the chosen statistic at each slowness and time step. Dimensions: ssteps*len(tr) for traces tr in st. ''' assert stat == 'amplitude' or stat == 'power' or stat == 'F', "'stat' argument must be one of 'amplitude', 'power' or 'F'" vespagram_data = np.array([]) try: if stat == 'amplitude': vespagram_data = np.array([nth_root_stack(st, s, baz, n) for s in np.linspace(smin, smax, ssteps)]) elif stat == 'power': vespagram_data = np.array([n_power_vespa(st, s, baz, n, winlen) for s in np.linspace(smin, smax, ssteps)]) elif stat == 'F': vespagram_data = np.array([f_vespa(st, s, baz, winlen) for s in np.linspace(smin, smax, ssteps)]) except AssertionError as err: raise err return vespagram_data
def vespagram_backazimuth(st, s, bazmin, bazmax, bazsteps, winlen, stat='power', n=1): ''' Calculates the vespagram for a seismic array over a given range of backazimuths, for a single scalar slowness, using the statistic specified. The chosen statistic is calculated as a function of time (in s) and backazimuth (in deg). This may be:- * 'amplitude' - the raw amplitude of the linear or nth root stack at each time and slowness step; * 'power' - the power in the linear or nth root beam calculated over a time window (length winlen) around each time step for each slowness; * 'F' - the F-statistic of the beam calculated over a time window (length winlen) around each time step for each slowness. Parameters ---------- st : ObsPy Stream object Stream of SAC format seismograms for the seismic array, length K = no. of stations in array s : float Magnitude of the slowness vector, in s/km bazmin : float Minimum backazimuth, in degrees bazmax : float Maximum backazimuth, in degrees bazsteps : int Integer number of steps between bazmin and bazmax for which to calculate the vespagram winlen : int Length of Hann window over which to calculate the power. stat : string Statistic to use for plotting the vespagram, either 'amplitude', 'power', or 'F' Returns ------- vespagram_data : NumPy array Array of values for the chosen statistic at each backazimuth and time step. Dimensions: bazsteps*len(tr) for traces tr in st. ''' if stat == 'amplitude': vespagram_data = np.array([nth_root_stack(st, s, baz, n) for baz in np.linspace(bazmin, bazmax, bazsteps)]) elif stat == 'power': vespagram_data = np.array([n_power_vespa(st, s, baz, n, winlen) for baz in np.linspace(bazmin, bazmax, bazsteps)]) elif stat == 'F': vespagram_data = np.array([f_vespa(st, s, baz, winlen) for baz in np.linspace(bazmin, bazmax,bazsteps)]) else: raise AssertionError("'stat' argument must be one of 'amplitude', 'power' or 'F'") return vespagram_data