M = len(V_phi) Nm = int(M / Nsp) V_phi = V_phi.reshape((Nsp, Nm)) V_phi = np.fft.irfft(V_phi, axis=1) def update_plot(i, data, scat): scat.set_array(data[:, i]) return scat, color_data = V_phi x = samplingPoints[:, 0] y = samplingPoints[:, 1] fig, ax = setFigure(num_axes=1, mode='light', ax1_dim=2) ax.plot(focusingPoint[0], focusingPoint[1], 'r*', markersize=12) scat = ax.scatter(x, y, c=V_phi[:, 0], s=100, cmap='gray') ani = animation.FuncAnimation(fig, update_plot, frames=range(Nm), fargs=(color_data, scat)) plt.show() #par = rsf.Par() #outputFile = rsf.Output() # Put axes in output #outputFile.put('n1', Ns)
def cli(): parser = argparse.ArgumentParser() parser.add_argument('--data', action='store_true', help='Plot the recorded data. (Default)') parser.add_argument('--testfunc', action='store_true', help='Plot the simulated test functions.') parser.add_argument('--tu', type=str, help='Specify the time units (e.g., \'s\' or \'ms\').') parser.add_argument('--au', type=str, help='Specify the amplitude units (e.g., \'m\' or \'mm\').') parser.add_argument('--pclip', type=float, help='''Specify the percentage (0-1) of the peak amplitude to display. This parameter is used for pcolormesh plots only. Default is set to 1.''') parser.add_argument('--title', type=str, help='''Specify a title for the wiggle plot. Default title is \'Data\' if \'--data\' is passed and 'Test Function' if \'--testfunc\' is passed.''') parser.add_argument('--format', '-f', type=str, default='pdf', choices=['png', 'pdf', 'ps', 'eps', 'svg'], help='''Specify the image format of the saved file. Accepted formats are png, pdf, ps, eps, and svg. Default format is set to pdf.''') parser.add_argument('--map', action='store_true', help='''Plot a map of the receiver and source/sampling point locations. The current source/sampling point will be highlighted. The boundary of the scatterer will also be shown if available.''') parser.add_argument('--mode', type=str, choices=['light', 'dark'], required=False, help='''Specify whether to view plots in light mode for daytime viewing or dark mode for nighttime viewing. Mode must be either \'light\' or \'dark\'.''') args = parser.parse_args() #============================================================================== # if a plotParams.pkl file already exists, load relevant parameters if Path('plotParams.pkl').exists(): plotParams = pickle.load(open('plotParams.pkl', 'rb')) # update parameters for wiggle plots based on passed arguments if args.mode is not None: plotParams['view_mode'] = args.mode if args.tu is not None: plotParams['tu'] = args.tu if args.au is not None: plotParams['au'] = args.au if args.pclip is not None: if args.pclip >= 0 and args.pclip <= 1: plotParams['pclip'] = args.pclip else: print(textwrap.dedent( ''' Warning: Invalid value passed to argument \'--pclip\'. Value must be between 0 and 1. ''')) if args.title is not None: if args.data: plotParams['data_title'] = args.title elif args.testfunc: plotParams['tf_title'] = args.title else: # create a plotParams dictionary file with default values plotParams = default_params() # update parameters for wiggle plots based on passed arguments if args.mode is not None: plotParams['view_mode'] = args.mode if args.tu is not None: plotParams['tu'] = args.tu if args.au is not None: plotParams['au'] = args.au if args.title is not None: if args.data: plotParams['data_title'] = args.title elif args.testfunc: plotParams['tf_title'] = args.title pickle.dump(plotParams, open('plotParams.pkl', 'wb'), pickle.HIGHEST_PROTOCOL) #============================================================================== # Load the relevant data to plot datadir = np.load('datadir.npz') receiverPoints = np.load(str(datadir['receivers'])) time = np.load(str(datadir['recordingTimes'])) # Apply any user-specified windows rinterval, tinterval, tstep, dt, sinterval = get_user_windows() receiverPoints = receiverPoints[rinterval, :] time = time[tinterval] # Load the scatterer boundary, if it exists if 'scatterer' in datadir: scatterer = np.load(str(datadir['scatterer'])) else: scatterer = None if all(v is True for v in [args.data, args.testfunc]): # User specified both data and testfuncs for plotting # Send error message and exit. sys.exit(textwrap.dedent( ''' Error: Cannot plot both recorded data and simulated test functions. Use vzwiggles --data to plot the recorded data or vzwiggles --testfuncs to plot the simulated test functions. ''')) elif all(v is not True for v in [args.data, args.testfunc]): # User did not specify which wiggles to plot. # Plot recorded data by default. # load the 3D data array into variable 'X' # X[receiver, time, source] wiggleType = 'data' X = load_data(domain='time', verbose=True) if 'sources' in datadir: sourcePoints = np.load(str(datadir['sources'])) sourcePoints = sourcePoints[sinterval, :] else: sourcePoints = None elif args.data: # load the 3D data array into variable 'X' # X[receiver, time, source] wiggleType = 'data' X = load_data(domain='time', verbose=True) if 'sources' in datadir: sourcePoints = np.load(str(datadir['sources'])) sourcePoints = sourcePoints[sinterval, :] else: sourcePoints = None elif args.testfunc: wiggleType = 'testfunc' # Update time to convolution times T = time[-1] - time[0] time = np.linspace(-T, T, 2 * len(time) - 1) if 'testFuncs' not in datadir and not Path('VZTestFuncs.npz').exists(): X, sourcePoints = load_test_funcs(domain='time', medium='constant', verbose=True, return_sampling_points=True) if 'testFuncs' in datadir and not Path('VZTestFuncs.npz').exists(): X, sourcePoints = load_test_funcs(domain='time', medium='variable', verbose=True, return_sampling_points=True) # Pad time axis with zeros to length of convolution 2Nt-1 npad = ((0, 0), (X.shape[1] - 1, 0), (0, 0)) X = np.pad(X, pad_width=npad, mode='constant', constant_values=0) elif not 'testFuncs' in datadir and Path('VZTestFuncs.npz').exists(): X, sourcePoints = load_test_funcs(domain='time', medium='constant', verbose=True, return_sampling_points=True) elif 'testFuncs' in datadir and Path('VZTestFuncs.npz').exists(): userResponded = False print(textwrap.dedent( ''' Two files are available containing simulated test functions. Enter '1' to view the user-provided test functions. (Default) Enter '2' to view the test functions computed by Vezda. Enter 'q/quit' to exit. ''')) while userResponded == False: answer = input('Action: ') if answer == '' or answer == '1': X, sourcePoints = load_test_funcs(domain='time', medium='variable', verbose=True, return_sampling_points=True) # Pad time axis with zeros to length of convolution 2Nt-1 npad = ((0, 0), (X.shape[1] - 1, 0), (0, 0)) X = np.pad(X, pad_width=npad, mode='constant', constant_values=0) userResponded = True break elif answer == '2': X, sourcePoints = load_test_funcs(domain='time', medium='constant', verbose=True, return_sampling_points=True) userResponded = True break elif answer == 'q' or answer == 'quit': sys.exit('Exiting program.') else: print('Invalid response. Please enter \'1\', \'2\', or \'q/quit\'.') #============================================================================== # increment source/recording interval and receiver interval to be consistent # with one-based indexing (i.e., count from one instead of zero) sinterval += 1 rinterval += 1 Ns = X.shape[2] remove_keymap_conflicts({'left', 'right', 'up', 'down', 'save'}) if args.map: fig, ax1, ax2 = setFigure(num_axes=2, mode=plotParams['view_mode'], ax2_dim=receiverPoints.shape[1]) ax1.volume = X ax1.index = Ns // 2 title = wave_title(ax1.index, sinterval, sourcePoints, wiggleType, plotParams) plotWiggles(ax1, X[:, :, ax1.index], time, rinterval, receiverPoints, title, wiggleType, plotParams) ax2.index = ax1.index plotMap(ax2, ax2.index, receiverPoints, sourcePoints, scatterer, wiggleType, plotParams) plt.tight_layout() fig.canvas.mpl_connect('key_press_event', lambda event: process_key_waves(event, time, rinterval, sinterval, receiverPoints, sourcePoints, Ns, scatterer, args.map, wiggleType, plotParams)) else: fig, ax = setFigure(num_axes=1, mode=plotParams['view_mode']) ax.volume = X ax.index = Ns // 2 title = wave_title(ax.index, sinterval, sourcePoints, wiggleType, plotParams) plotWiggles(ax, X[:, :, ax.index], time, rinterval, receiverPoints, title, wiggleType, plotParams) plt.tight_layout() fig.canvas.mpl_connect('key_press_event', lambda event: process_key_waves(event, time, rinterval, sinterval, receiverPoints, sourcePoints, Ns, scatterer, args.map, wiggleType, plotParams)) plt.show()
def cli(): parser = argparse.ArgumentParser() parser.add_argument( '--nfe', action='store_true', help='''Plot the image obtained by solving the near-field equation.''') parser.add_argument( '--lse', action='store_true', help= '''Plot the image obtained by solving the Lippmann-Schwinger equation.''' ) parser.add_argument( '--movie', action='store_true', help='Save a three-dimensional figure as a rotating frame.') parser.add_argument('--isolevel', type=float, default=None, help='''Specify the contour level of the isosurface for three-dimensional visualizations. Level must be between 0 and 1.''' ) parser.add_argument( '--format', '-f', type=str, default=None, choices=['png', 'pdf', 'ps', 'eps', 'svg'], help= '''specify the image format of the saved file. Accepted formats are png, pdf, ps, eps, and svg. Default format is set to pdf.''') parser.add_argument('--xlabel', type=str, default=None, help='''specify a label for the x-axis.''') parser.add_argument('--ylabel', type=str, default=None, help='''specify a label for the y-axis.''') parser.add_argument('--zlabel', type=str, default=None, help='''specify a label for the z-axis.''') parser.add_argument( '--xu', type=str, default=None, help='Specify the units for the x-axis (e.g., \'m\' or \'km\').') parser.add_argument( '--yu', type=str, default=None, help='Specify the units for the y-axis (e.g., \'m\' or \'km\').') parser.add_argument( '--zu', type=str, default=None, help='Specify the units for the z-axis (e.g., \'m\' or \'km\').') parser.add_argument( '--colormap', type=str, default=None, choices=['viridis', 'plasma', 'inferno', 'magma', 'cividis'], help= 'specify a perceptually uniform sequential colormap. Default is \'magma\'' ) parser.add_argument( '--colorbar', type=str, default=None, choices=['n', 'no', 'false', 'y', 'yes', 'true'], help= 'specify \'y/yes/true\' to plot colorbar. Default is \'n/no/false\'') parser.add_argument( '--invert_xaxis', type=str, default=None, choices=['n', 'no', 'false', 'y', 'yes', 'true'], help= 'specify \'y/yes/true\' to invert x-axis. Default is \'n/no/false\'') parser.add_argument( '--invert_yaxis', type=str, default=None, choices=['n', 'no', 'false', 'y', 'yes', 'true'], help= 'specify \'y/yes/true\' to invert y-axis. Default is \'n/no/false\'') parser.add_argument( '--invert_zaxis', type=str, default=None, choices=['n', 'no', 'false', 'y', 'yes', 'true'], help= 'specify \'y/yes/true\' to invert z-axis. Default is \'n/no/false\'') parser.add_argument( '--show_scatterer', type=str, default=None, choices=['n', 'no', 'false', 'y', 'yes', 'true'], help= 'specify \'y/yes/true\' to show scatterer boundary. Default is \'n/no/false\'' ) parser.add_argument( '--show_sources', type=str, default=None, choices=['n', 'no', 'false', 'y', 'yes', 'true'], help='specify \'n/no/false\' to hide sources. Default is \'y/yes/true\'' ) parser.add_argument( '--show_receivers', type=str, default=None, choices=['n', 'no', 'false', 'y', 'yes', 'true'], help= 'specify \'n/no/false\' to hide receivers. Default is \'y/yes/true\'') parser.add_argument( '--mode', type=str, choices=['light', 'dark'], required=False, help='''Specify whether to view plots in light mode for daytime viewing or dark mode for nighttime viewing. Mode must be either \'light\' or \'dark\'.''') args = parser.parse_args() #============================================================================== # if a plotParams.pkl file already exists, load relevant parameters if Path('plotParams.pkl').exists(): plotParams = pickle.load(open('plotParams.pkl', 'rb')) # for both wiggle plots and image plots if args.format is not None: plotParams['pltformat'] = args.format if args.mode is not None: plotParams['view_mode'] = args.mode # for image/map plots if args.isolevel is not None: plotParams['isolevel'] = args.isolevel if args.xlabel is not None: plotParams['xlabel'] = args.xlabel if args.ylabel is not None: plotParams['ylabel'] = args.ylabel if args.zlabel is not None: plotParams['zlabel'] = args.zlabel #============================================================================== # handle units here if args.xu is not None: plotParams['xu'] = args.xu if args.yu is not None: plotParams['yu'] = args.yu if args.zu is not None: plotParams['zu'] = args.zu #============================================================================== if args.colormap is not None: plotParams['colormap'] = args.colormap #============================================================================== if args.colorbar is not None: if args.colorbar == 'n' or args.colorbar == 'no' or args.colorbar == 'false': plotParams['colorbar'] = False elif args.colorbar == 'y' or args.colorbar == 'yes' or args.colorbar == 'true': plotParams['colorbar'] = True #============================================================================== if args.invert_xaxis is not None: if args.invert_xaxis == 'n' or args.invert_xaxis == 'no' or args.invert_xaxis == 'false': plotParams['invert_xaxis'] = False elif args.invert_xaxis == 'y' or args.invert_xaxis == 'yes' or args.invert_xaxis == 'true': plotParams['invert_xaxis'] = True #============================================================================== if args.invert_yaxis is not None: if args.invert_yaxis == 'n' or args.invert_yaxis == 'no' or args.invert_yaxis == 'false': plotParams['invert_yaxis'] = False elif args.invert_yaxis == 'y' or args.invert_yaxis == 'yes' or args.invert_yaxis == 'true': plotParams['invert_yaxis'] = True #============================================================================== if args.invert_zaxis is not None: if args.invert_zaxis == 'n' or args.invert_zaxis == 'no' or args.invert_zaxis == 'false': plotParams['invert_zaxis'] = False elif args.invert_zaxis == 'y' or args.invert_zaxis == 'yes' or args.invert_zaxis == 'true': plotParams['invert_zaxis'] = True #============================================================================== if args.show_scatterer is not None: if args.show_scatterer == 'n' or args.show_scatterer == 'no' or args.show_scatterer == 'false': plotParams['show_scatterer'] = False elif args.show_scatterer == 'y' or args.show_scatterer == 'yes' or args.show_scatterer == 'true': plotParams['show_scatterer'] = True #============================================================================== if args.show_sources is not None: if args.show_sources == 'n' or args.show_sources == 'no' or args.show_sources == 'false': plotParams['show_sources'] = False elif args.show_sources == 'y' or args.show_sources == 'yes' or args.show_sources == 'true': plotParams['show_sources'] = True #============================================================================== if args.show_receivers is not None: if args.show_receivers == 'n' or args.show_receivers == 'no' or args.show_receivers == 'false': plotParams['show_receivers'] = False elif args.show_receivers == 'y' or args.show_receivers == 'yes' or args.show_receivers == 'true': plotParams['show_receivers'] = True #============================================================================== else: # create a plotParams dictionary file with default values plotParams = default_params() # updated parameters based on passed arguments #for both image and wiggle plots if args.format is not None: plotParams['pltformat'] = args.format # for image/map plots if args.isolevel is not None: plotParams['isolevel'] = args.isolevel if args.colormap is not None: plotParams['colormap'] = args.colormap if args.colorbar is not None: if args.colorbar == 'n' or args.colorbar == 'no' or args.colorbar == 'false': plotParams['colorbar'] = False elif args.colorbar == 'y' or args.colorbar == 'yes' or args.colorbar == 'true': plotParams['colorbar'] = True if args.xlabel is not None: plotParams['xlabel'] = args.xlabel if args.ylabel is not None: plotParams['ylabel'] = args.ylabel if args.zlabel is not None: plotParams['zlabel'] = args.zlabel #============================================================================== # update units if args.xu is not None: plotParams['xu'] = args.xu if args.yu is not None: plotParams['yu'] = args.yu if args.zu is not None: plotParams['zu'] = args.zu #============================================================================== if args.invert_xaxis is not None: if args.invert_xaxis == 'n' or args.invert_xaxis == 'no' or args.invert_xaxis == 'false': plotParams['invert_xaxis'] = False elif args.invert_xaxis == 'y' or args.invert_xaxis == 'yes' or args.invert_xaxis == 'true': plotParams['invert_xaxis'] = True #============================================================================== if args.invert_yaxis is not None: if args.invert_yaxis == 'n' or args.invert_yaxis == 'no' or args.invert_yaxis == 'false': plotParams['invert_yaxis'] = False elif args.invert_yaxis == 'y' or args.invert_yaxis == 'yes' or args.invert_yaxis == 'true': plotParams['invert_yaxis'] = True #============================================================================== if args.invert_zaxis is not None: if args.invert_zaxis == 'n' or args.invert_zaxis == 'no' or args.invert_zaxis == 'false': plotParams['invert_zaxis'] = False elif args.invert_zaxis == 'y' or args.invert_zaxis == 'yes' or args.invert_zaxis == 'true': plotParams['invert_zaxis'] = True #============================================================================== if args.show_scatterer is not None: if args.show_scatterer == 'n' or args.show_scatterer == 'no' or args.show_scatterer == 'false': plotParams['show_scatterer'] = False elif args.show_scatterer == 'y' or args.show_scatterer == 'yes' or args.show_scatterer == 'true': plotParams['show_scatterer'] = True #============================================================================== if args.show_sources is not None: if args.show_sources == 'n' or args.show_sources == 'no' or args.show_sources == 'false': plotParams['show_sources'] = False elif args.show_sources == 'y' or args.show_sources == 'yes' or args.show_sources == 'true': plotParams['show_sources'] = True #============================================================================== if args.show_receivers is not None: if args.show_receivers == 'n' or args.show_receivers == 'no' or args.show_receivers == 'false': plotParams['show_receivers'] = False elif args.show_receivers == 'y' or args.show_receivers == 'yes' or args.show_receivers == 'true': plotParams['show_receivers'] = True pickle.dump(plotParams, open('plotParams.pkl', 'wb'), pickle.HIGHEST_PROTOCOL) #============================================================================== # load the shape of the scatterer and source/receiver locations datadir = np.load('datadir.npz') receiverPoints = np.load(str(datadir['receivers'])) if 'sources' in datadir: sourcePoints = np.load(str(datadir['sources'])) else: sourcePoints = None if 'scatterer' in datadir and plotParams['show_scatterer']: scatterer = np.load(str(datadir['scatterer'])) else: scatterer = None if plotParams['show_scatterer']: print( textwrap.dedent(''' Warning: Attempted to load the file containing the scatterer coordinates, but no such file exists. If a file exists containing the scatterer points, run: 'vzdata --path=<path/to/data/>' and specify the file containing the scatterer points when prompted. Otherwise, specify 'no' when asked if a file containing the scatterer points exists. ''')) if Path('window.npz').exists(): windowDict = np.load('window.npz') # Apply the receiver window rstart = windowDict['rstart'] rstop = windowDict['rstop'] rstep = windowDict['rstep'] rinterval = np.arange(rstart, rstop, rstep) receiverPoints = receiverPoints[rinterval, :] if sourcePoints is not None: # Apply the source window sstart = windowDict['sstart'] sstop = windowDict['sstop'] sstep = windowDict['sstep'] sinterval = np.arange(sstart, sstop, sstep) sourcePoints = sourcePoints[sinterval, :] #============================================================================== # Load the user-specified sampling grid if 'samplingGrid' in datadir: samplingGrid = np.load(str(datadir['samplingGrid'])) else: try: samplingGrid = np.load('samplingGrid.npz') except FileNotFoundError: samplingGrid = None if samplingGrid is None: sys.exit( textwrap.dedent(''' A sampling grid needs to be set up before it can be plotted. Enter: vzgrid --help from the command-line for more information on how to set up a sampling grid. ''')) x = samplingGrid['x'] y = samplingGrid['y'] tau = samplingGrid['tau'] if 'z' not in samplingGrid: X, Y = np.meshgrid(x, y, indexing='ij') Z = None else: z = samplingGrid['z'] X, Y, Z = np.meshgrid(x, y, z, indexing='ij') #============================================================================== if Path('imageNFE.npz').exists() and not Path('imageLSE.npz').exists(): if args.lse: sys.exit( textwrap.dedent(''' PlotError: User requested to plot an image obtained by solving the Lippmann-Schwinger equation (LSE), but no such image exists. ''')) # plot the image obtained by solving the near-field equaiton (NFE) Dict = np.load('imageNFE.npz') flag = 'NFE' fig, ax = plotImage(Dict, X, Y, Z, tau, plotParams, flag, args.movie) elif not Path('imageNFE.npz').exists() and Path('imageLSE.npz').exists(): if args.nfe: sys.exit( textwrap.dedent(''' PlotError: User requested to plot an image obtained by solving the near-field equation (NFE), but no such image exists. ''')) # plot the image obtained by solving the Lippmann-Schwinger equation (LSE) Dict = np.load('imageLSE.npz') flag = 'LSE' fig, ax = plotImage(Dict, X, Y, Z, tau, plotParams, flag) elif Path('imageNFE.npz').exists() and Path('imageLSE.npz').exists(): if args.nfe and not args.lse: # plot the image obtained by solving the near-field equaiton (NFE) Dict = np.load('imageNFE.npz') flag = 'NFE' fig, ax = plotImage(Dict, X, Y, Z, tau, plotParams, flag, args.movie) elif not args.nfe and args.lse: # plot the image obtained by solving the Lippmann-Schwinger equation (LSE) Dict = np.load('imageLSE.npz') flag = 'LSE' fig, ax = plotImage(Dict, X, Y, Z, tau, plotParams, flag) elif args.nfe and args.lse: sys.exit( textwrap.dedent(''' PlotError: Please specify only one of the arguments \'--nfe\' or \'--lse\' to view the corresponding image.''')) else: flag = '' print( textwrap.dedent(''' Images obtained by solving both NFE and LSE are available. Enter: vzimage --nfe to view the image obtained by solving NFE or vzimage --lse to view the image obtained by solving LSE. ''')) else: flag = '' if args.nfe: print( 'Warning: An image obtained by solving the near-field equation (NFE) does not exist.' ) elif args.lse: print( 'Warning: An image obtained by solving the Lippmann-Schwinger equation (LSE) does not exist.' ) elif args.nfe and args.lse: print( textwrap.dedent(''' Warning: An image has not yet been obtained by solving either the near-field equation (NFE) or the Lippmann-Schwinger equation (LSE). ''')) try: ax except NameError: fig, ax = setFigure(num_axes=1, mode=plotParams['view_mode'], ax1_dim=receiverPoints.shape[1]) plotMap(ax, None, receiverPoints, sourcePoints, scatterer, 'data', plotParams) #============================================================================== pltformat = plotParams['pltformat'] fig.savefig('image' + flag + '.' + pltformat, format=pltformat, bbox_inches='tight', facecolor=fig.get_facecolor(), transparent=True) plt.show()
def cli(): parser = argparse.ArgumentParser() parser.add_argument( '--nfe', action='store_true', help='''Plot the image obtained by solving the near-field equation.''') parser.add_argument( '--lse', action='store_true', help= '''Plot the image obtained by solving the Lippmann-Schwinger equation.''' ) parser.add_argument( '--spacetime', action='store_true', help='''Plot the support of the source function in space-time.''') parser.add_argument( '--movie', action='store_true', help='''Save the space-time figure as a rotating frame (2D space) or as a time-lapse structure (3D space).''') parser.add_argument('--isolevel', type=float, default=None, help='''Specify the contour level of the isosurface for three-dimensional visualizations. Level must be between 0 and 1.''' ) parser.add_argument( '--format', '-f', type=str, default=None, choices=['png', 'pdf', 'ps', 'eps', 'svg'], help= '''specify the image format of the saved file. Accepted formats are png, pdf, ps, eps, and svg. Default format is set to pdf.''') parser.add_argument('--xlabel', type=str, default=None, help='''specify a label for the x-axis.''') parser.add_argument('--ylabel', type=str, default=None, help='''specify a label for the y-axis.''') parser.add_argument('--zlabel', type=str, default=None, help='''specify a label for the z-axis.''') parser.add_argument( '--xu', type=str, default=None, help='Specify the units for the x-axis (e.g., \'m\' or \'km\').') parser.add_argument( '--yu', type=str, default=None, help='Specify the units for the y-axis (e.g., \'m\' or \'km\').') parser.add_argument( '--zu', type=str, default=None, help='Specify the units for the z-axis (e.g., \'m\' or \'km\').') parser.add_argument( '--colormap', type=str, default=None, choices=['viridis', 'plasma', 'inferno', 'magma', 'cividis'], help= 'specify a perceptually uniform sequential colormap. Default is \'magma\'' ) parser.add_argument( '--colorbar', type=str, default=None, choices=['n', 'no', 'false', 'y', 'yes', 'true'], help= 'specify \'y/yes/true\' to plot colorbar. Default is \'n/no/false\'') parser.add_argument( '--invert_xaxis', type=str, default=None, choices=['n', 'no', 'false', 'y', 'yes', 'true'], help= 'specify \'y/yes/true\' to invert x-axis. Default is \'n/no/false\'') parser.add_argument( '--invert_yaxis', type=str, default=None, choices=['n', 'no', 'false', 'y', 'yes', 'true'], help= 'specify \'y/yes/true\' to invert y-axis. Default is \'n/no/false\'') parser.add_argument( '--invert_zaxis', type=str, default=None, choices=['n', 'no', 'false', 'y', 'yes', 'true'], help= 'specify \'y/yes/true\' to invert z-axis. Default is \'n/no/false\'') parser.add_argument( '--show_scatterer', type=str, default=None, choices=['n', 'no', 'false', 'y', 'yes', 'true'], help= 'specify \'y/yes/true\' to show scatterer boundary. Default is \'n/no/false\'' ) parser.add_argument( '--show_sources', type=str, default=None, choices=['n', 'no', 'false', 'y', 'yes', 'true'], help='specify \'n/no/false\' to hide sources. Default is \'y/yes/true\'' ) parser.add_argument( '--show_receivers', type=str, default=None, choices=['n', 'no', 'false', 'y', 'yes', 'true'], help= 'specify \'n/no/false\' to hide receivers. Default is \'y/yes/true\'') parser.add_argument( '--mode', type=str, choices=['light', 'dark'], required=False, help='''Specify whether to view plots in light mode for daytime viewing or dark mode for nighttime viewing. Mode must be either \'light\' or \'dark\'.''') args = parser.parse_args() #============================================================================== # if a plotParams.pkl file already exists, load relevant parameters if Path('plotParams.pkl').exists(): plotParams = pickle.load(open('plotParams.pkl', 'rb')) # for both wiggle plots and image plots if args.format is not None: plotParams['pltformat'] = args.format if args.mode is not None: plotParams['view_mode'] = args.mode # for image/map plots if args.isolevel is not None: plotParams['isolevel'] = args.isolevel if args.xlabel is not None: plotParams['xlabel'] = args.xlabel if args.ylabel is not None: plotParams['ylabel'] = args.ylabel if args.zlabel is not None: plotParams['zlabel'] = args.zlabel #============================================================================== # handle units here if args.xu is not None: plotParams['xu'] = args.xu if args.yu is not None: plotParams['yu'] = args.yu if args.zu is not None: plotParams['zu'] = args.zu #============================================================================== if args.colormap is not None: plotParams['colormap'] = args.colormap #============================================================================== if args.colorbar is not None: if args.colorbar == 'n' or args.colorbar == 'no' or args.colorbar == 'false': plotParams['colorbar'] = False elif args.colorbar == 'y' or args.colorbar == 'yes' or args.colorbar == 'true': plotParams['colorbar'] = True #============================================================================== if args.invert_xaxis is not None: if args.invert_xaxis == 'n' or args.invert_xaxis == 'no' or args.invert_xaxis == 'false': plotParams['invert_xaxis'] = False elif args.invert_xaxis == 'y' or args.invert_xaxis == 'yes' or args.invert_xaxis == 'true': plotParams['invert_xaxis'] = True #============================================================================== if args.invert_yaxis is not None: if args.invert_yaxis == 'n' or args.invert_yaxis == 'no' or args.invert_yaxis == 'false': plotParams['invert_yaxis'] = False elif args.invert_yaxis == 'y' or args.invert_yaxis == 'yes' or args.invert_yaxis == 'true': plotParams['invert_yaxis'] = True #============================================================================== if args.invert_zaxis is not None: if args.invert_zaxis == 'n' or args.invert_zaxis == 'no' or args.invert_zaxis == 'false': plotParams['invert_zaxis'] = False elif args.invert_zaxis == 'y' or args.invert_zaxis == 'yes' or args.invert_zaxis == 'true': plotParams['invert_zaxis'] = True #============================================================================== if args.show_scatterer is not None: if args.show_scatterer == 'n' or args.show_scatterer == 'no' or args.show_scatterer == 'false': plotParams['show_scatterer'] = False elif args.show_scatterer == 'y' or args.show_scatterer == 'yes' or args.show_scatterer == 'true': plotParams['show_scatterer'] = True #============================================================================== if args.show_sources is not None: if args.show_sources == 'n' or args.show_sources == 'no' or args.show_sources == 'false': plotParams['show_sources'] = False elif args.show_sources == 'y' or args.show_sources == 'yes' or args.show_sources == 'true': plotParams['show_sources'] = True #============================================================================== if args.show_receivers is not None: if args.show_receivers == 'n' or args.show_receivers == 'no' or args.show_receivers == 'false': plotParams['show_receivers'] = False elif args.show_receivers == 'y' or args.show_receivers == 'yes' or args.show_receivers == 'true': plotParams['show_receivers'] = True #============================================================================== else: # create a plotParams dictionary file with default values plotParams = default_params() # updated parameters based on passed arguments #for both image and wiggle plots if args.format is not None: plotParams['pltformat'] = args.format # for image/map plots if args.isolevel is not None: plotParams['isolevel'] = args.isolevel if args.colormap is not None: plotParams['colormap'] = args.colormap if args.colorbar is not None: if args.colorbar == 'n' or args.colorbar == 'no' or args.colorbar == 'false': plotParams['colorbar'] = False elif args.colorbar == 'y' or args.colorbar == 'yes' or args.colorbar == 'true': plotParams['colorbar'] = True if args.xlabel is not None: plotParams['xlabel'] = args.xlabel if args.ylabel is not None: plotParams['ylabel'] = args.ylabel if args.zlabel is not None: plotParams['zlabel'] = args.zlabel #============================================================================== # update units if args.xu is not None: plotParams['xu'] = args.xu if args.yu is not None: plotParams['yu'] = args.yu if args.zu is not None: plotParams['zu'] = args.zu #============================================================================== if args.invert_xaxis is not None: if args.invert_xaxis == 'n' or args.invert_xaxis == 'no' or args.invert_xaxis == 'false': plotParams['invert_xaxis'] = False elif args.invert_xaxis == 'y' or args.invert_xaxis == 'yes' or args.invert_xaxis == 'true': plotParams['invert_xaxis'] = True #============================================================================== if args.invert_yaxis is not None: if args.invert_yaxis == 'n' or args.invert_yaxis == 'no' or args.invert_yaxis == 'false': plotParams['invert_yaxis'] = False elif args.invert_yaxis == 'y' or args.invert_yaxis == 'yes' or args.invert_yaxis == 'true': plotParams['invert_yaxis'] = True #============================================================================== if args.invert_zaxis is not None: if args.invert_zaxis == 'n' or args.invert_zaxis == 'no' or args.invert_zaxis == 'false': plotParams['invert_zaxis'] = False elif args.invert_zaxis == 'y' or args.invert_zaxis == 'yes' or args.invert_zaxis == 'true': plotParams['invert_zaxis'] = True #============================================================================== if args.show_scatterer is not None: if args.show_scatterer == 'n' or args.show_scatterer == 'no' or args.show_scatterer == 'false': plotParams['show_scatterer'] = False elif args.show_scatterer == 'y' or args.show_scatterer == 'yes' or args.show_scatterer == 'true': plotParams['show_scatterer'] = True #============================================================================== if args.show_sources is not None: if args.show_sources == 'n' or args.show_sources == 'no' or args.show_sources == 'false': plotParams['show_sources'] = False elif args.show_sources == 'y' or args.show_sources == 'yes' or args.show_sources == 'true': plotParams['show_sources'] = True #============================================================================== if args.show_receivers is not None: if args.show_receivers == 'n' or args.show_receivers == 'no' or args.show_receivers == 'false': plotParams['show_receivers'] = False elif args.show_receivers == 'y' or args.show_receivers == 'yes' or args.show_receivers == 'true': plotParams['show_receivers'] = True pickle.dump(plotParams, open('plotParams.pkl', 'wb'), pickle.HIGHEST_PROTOCOL) #============================================================================== # load the shape of the scatterer and source/receiver locations datadir = np.load('datadir.npz') receiverPoints = np.load(str(datadir['receivers'])) if 'sources' in datadir: sourcePoints = np.load(str(datadir['sources'])) else: sourcePoints = None if 'scatterer' in datadir and plotParams['show_scatterer']: scatterer = np.load(str(datadir['scatterer'])) else: scatterer = None if plotParams['show_scatterer']: print( textwrap.dedent(''' Warning: Attempted to load the file containing the scatterer coordinates, but no such file exists. If a file exists containing the scatterer points, run: 'vzdata --path=<path/to/data/>' and specify the file containing the scatterer points when prompted. Otherwise, specify 'no' when asked if a file containing the scatterer points exists. ''')) if Path('window.npz').exists(): windowDict = np.load('window.npz') # Apply the receiver window rstart = windowDict['rstart'] rstop = windowDict['rstop'] rstep = windowDict['rstep'] rinterval = np.arange(rstart, rstop, rstep) receiverPoints = receiverPoints[rinterval, :] if sourcePoints is not None: # Apply the source window sstart = windowDict['sstart'] sstop = windowDict['sstop'] sstep = windowDict['sstep'] sinterval = np.arange(sstart, sstop, sstep) sourcePoints = sourcePoints[sinterval, :] #============================================================================== if Path('imageNFE.npz').exists() and not Path('imageLSE.npz').exists(): if args.lse: sys.exit( textwrap.dedent(''' PlotError: User requested to plot an image obtained by solving the Lippmann-Schwinger equation (LSE), but no such image exists. ''')) # plot the image obtained by solving the near-field equaiton (NFE) Dict = np.load('imageNFE.npz') X = Dict['X'] Y = Dict['Y'] if 'Z' in Dict: Z = Dict['Z'] else: Z = None if 'tau' in Dict: tau = Dict['tau'] Ntau = len(tau) else: tau = None alpha = Dict['alpha'] flag = 'NFE' fig1, ax1, *otherImages = plotImage(Dict, plotParams, flag, args.spacetime, args.movie) if otherImages: if len(otherImages) == 2: fig2, ax2 = otherImages elif len(otherImages) == 4: fig2, ax2, fig3, ax3 = otherImages elif not Path('imageNFE.npz').exists() and Path('imageLSE.npz').exists(): if args.nfe: sys.exit( textwrap.dedent(''' PlotError: User requested to plot an image obtained by solving the near-field equation (NFE), but no such image exists. ''')) # plot the image obtained by solving the Lippmann-Schwinger equation (LSE) Dict = np.load('imageLSE.npz') flag = 'LSE' fig1, ax1 = plotImage(Dict, plotParams, flag) elif Path('imageNFE.npz').exists() and Path('imageLSE.npz').exists(): if args.nfe and not args.lse: # plot the image obtained by solving the near-field equaiton (NFE) Dict = np.load('imageNFE.npz') X = Dict['X'] Y = Dict['Y'] if 'Z' in Dict: Z = Dict['Z'] else: Z = None if 'tau' in Dict: tau = Dict['tau'] Ntau = len(tau) else: tau = None alpha = Dict['alpha'] flag = 'NFE' fig1, ax1, *otherImages = plotImage(Dict, plotParams, flag, args.spacetime, args.movie) if otherImages: if len(otherImages) == 2: fig2, ax2 = otherImages elif len(otherImages) == 4: fig2, ax2, fig3, ax3 = otherImages elif not args.nfe and args.lse: # plot the image obtained by solving the Lippmann-Schwinger equation (LSE) Dict = np.load('imageLSE.npz') flag = 'LSE' fig1, ax1 = plotImage(Dict, plotParams, flag) elif args.nfe and args.lse: sys.exit( textwrap.dedent(''' PlotError: Please specify only one of the arguments \'--nfe\' or \'--lse\' to view the corresponding image.''')) else: sys.exit( textwrap.dedent(''' Images obtained by solving both NFE and LSE are available. Enter: vzimage --nfe to view the image obtained by solving NFE or vzimage --lse to view the image obtained by solving LSE. ''')) else: flag = '' if args.nfe: print( 'Warning: An image obtained by solving the near-field equation (NFE) does not exist.' ) elif args.lse: print( 'Warning: An image obtained by solving the Lippmann-Schwinger equation (LSE) does not exist.' ) elif args.nfe and args.lse: print( textwrap.dedent(''' Warning: An image has not yet been obtained by solving either the near-field equation (NFE) or the Lippmann-Schwinger equation (LSE). ''')) try: ax1 except NameError: fig1, ax1 = setFigure(num_axes=1, mode=plotParams['view_mode'], ax1_dim=receiverPoints.shape[1]) plotMap(ax1, None, receiverPoints, sourcePoints, scatterer, 'data', plotParams) #============================================================================== pltformat = plotParams['pltformat'] fig1.savefig('image' + flag + '.' + pltformat, format=pltformat, bbox_inches='tight', facecolor=fig1.get_facecolor(), transparent=True) if flag == 'NFE' and args.spacetime: remove_keymap_conflicts({'left', 'right', 'up', 'down', 'save'}) if Z is None: try: fig3.savefig('spacetime' + flag + '.' + pltformat, format=pltformat, bbox_inches='tight', facecolor=fig3.get_facecolor(), transparent=True) fig2.canvas.mpl_connect( 'key_press_event', lambda event: process_key_images( event, plotParams, alpha, X, Y, Z, Ntau, tau)) except NameError: print( '\nSpace-time reconstruction is not available for a single sampling point in time.\n' ) else: try: fig2.savefig('spacetime' + flag + '.' + pltformat, format=pltformat, bbox_inches='tight', facecolor=fig2.get_facecolor(), transparent=True) fig2.canvas.mpl_connect( 'key_press_event', lambda event: process_key_images( event, plotParams, alpha, X, Y, Z, Ntau, tau)) except NameError: print( '\nSpace-time reconstruction is not available for a single sampling point in time.\n' ) plt.show()
def cli(): parser = argparse.ArgumentParser() parser.add_argument('--nfo', action='store_true', help='''Plot the singular-value decomposition of the near-field operator (NFO).''') parser.add_argument('--lso', action='store_true', help='''Plot the singular-value decomposition of the Lippmann-Schwinger operator (LSO).''') parser.add_argument('--format', '-f', type=str, default='pdf', choices=['png', 'pdf', 'ps', 'eps', 'svg'], help='''Specify the image format of the saved file. Accepted formats are png, pdf, ps, eps, and svg. Default format is set to pdf.''') parser.add_argument('--mode', type=str, choices=['light', 'dark'], required=False, help='''Specify whether to view plots in light mode for daytime viewing or dark mode for nighttime viewing. Mode must be either \'light\' or \'dark\'.''') args = parser.parse_args() # See if an SVD already exists. If so, attempt to load it... if args.nfo and not args.lso: operatorName = 'near-field operator' filename = 'NFO_SVD.npz' elif not args.nfo and args.lso: operatorName = 'Lippmann-Schwinger operator' filename = 'LSO_SVD.npz' elif args.nfo and args.lso: sys.exit(textwrap.dedent( ''' UsageError: Please specify only one of the arguments \'--nfo\' or \'--lso\'. ''')) else: sys.exit(textwrap.dedent( ''' For which operator would you like to plot a singular-value decomposition? Enter: vzsvd --nfo for the near-field operator or vzsvd --lso for the Lippmann-Schwinger operator. ''')) try: U, s, Vh = load_svd(filename) except IOError: sys.exit(textwrap.dedent( ''' A singular-value decomposition of the {s} does not exist. '''.format(s=operatorName))) #============================================================================== # Read in data files #============================================================================== datadir = np.load('datadir.npz') receiverPoints = np.load(str(datadir['receivers'])) recordingTimes = np.load(str(datadir['recordingTimes'])) # Apply user-specified windows rinterval, tinterval, tstep, dt, sinterval = get_user_windows() receiverPoints = receiverPoints[rinterval, :] recordingTimes = recordingTimes[tinterval] # Load appropriate source points and source window if args.nfo: # Near-field operator if 'sources' in datadir: sourcePoints = np.load(str(datadir['sources'])) sourcePoints = sourcePoints[sinterval, :] else: sourcePoints = None else: # if args.lso (Lippmann-Schwinger operator) # in the case of the Lippmann-Schwinger operator, 'sourcePoints' # correspond to sampling points, which should always exist. if 'testFuncs' in datadir: sourcePoints = np.load(str(datadir['samplingPoints'])) elif Path('VZTestFuncs.npz').exists(): TFDict = np.load('VZTestFuncs.npz') sourcePoints = TFDict['samplingPoints'] else: sys.exit(textwrap.dedent( ''' Error: A sampling grid must exist and test functions computed before a singular-value decomposition of the Lippmann-Schwinger operator can be computed or plotted. ''')) # update sinterval for test functions sinterval = np.arange(0, sourcePoints.shape[0], 1) # increment receiver/source intervals to be consistent with # one-based indexing (i.e., count from one instead of zero) rinterval += 1 sinterval += 1 #============================================================================== # Determine whether to plot SVD in time domain or frequency domain #============================================================================== if np.issubdtype(U.dtype, np.complexfloating): domain = 'freq' else: domain = 'time' # Load plot parameters if Path('plotParams.pkl').exists(): plotParams = pickle.load(open('plotParams.pkl', 'rb')) else: plotParams = default_params() Nr = receiverPoints.shape[0] Nt = len(recordingTimes) k = len(s) if domain == 'freq': # plot singular vectors in frequency domain N = nextPow2(2 * Nt) freqs = np.fft.rfftfreq(N, tstep * dt) if plotParams['fmax'] is None: plotParams['fmax'] = np.max(freqs) # Apply the frequency window fmin = plotParams['fmin'] fmax = plotParams['fmax'] df = 1.0 / (N * tstep * dt) startIndex = int(round(fmin / df)) stopIndex = int(round(fmax / df)) finterval = np.arange(startIndex, stopIndex, 1) freqs = freqs[finterval] M = len(freqs) Ns = int(Vh.shape[1] / M) U = U.toarray().reshape((Nr, M, k)) V = Vh.getH().toarray().reshape((Ns, M, k)) else: # domain == 'time' M = 2 * Nt - 1 Ns = int(Vh.shape[1] / M) U = U.reshape((Nr, M, k)) V = Vh.T.reshape((Ns, M, k)) T = recordingTimes[-1] - recordingTimes[0] times = np.linspace(-T, T, M) if args.mode is not None: plotParams['view_mode'] = args.mode pickle.dump(plotParams, open('plotParams.pkl', 'wb'), pickle.HIGHEST_PROTOCOL) remove_keymap_conflicts({'left', 'right', 'up', 'down', 'save'}) if domain == 'freq': # plot the left singular vectors fig_lvec, ax_lvec_r, ax_lvec_i = setFigure(num_axes=2, mode=plotParams['view_mode']) ax_lvec_r.volume = U.real ax_lvec_i.volume = U.imag ax_lvec_r.index = 0 ax_lvec_i.index = 0 fig_lvec.suptitle('Left-Singular Vector', color=ax_lvec_r.titlecolor, fontsize=16) fig_lvec.subplots_adjust(bottom=0.27, top=0.86) leftTitle_r = vector_title('left', ax_lvec_r.index + 1, 'real') leftTitle_i = vector_title('left', ax_lvec_i.index + 1, 'imag') for ax, title in zip([ax_lvec_r, ax_lvec_i], [leftTitle_r, leftTitle_i]): left_im = plotFreqVectors(ax, ax.volume[:, :, ax.index], freqs, rinterval, receiverPoints, title, 'left', plotParams) lp0 = ax_lvec_r.get_position().get_points().flatten() lp1 = ax_lvec_i.get_position().get_points().flatten() left_cax = fig_lvec.add_axes([lp0[0], 0.12, lp1[2]-lp0[0], 0.03]) lcbar = fig_lvec.colorbar(left_im, left_cax, orientation='horizontal') lcbar.outline.set_edgecolor(ax_lvec_r.cbaredgecolor) lcbar.ax.tick_params(axis='x', colors=ax_lvec_r.labelcolor) lcbar.ax.yaxis.set_major_formatter(FormatStrFormatter('%.1f')) lcbar.set_label('Amplitude', labelpad=5, rotation=0, fontsize=12, color=ax_lvec_r.labelcolor) fig_lvec.canvas.mpl_connect('key_press_event', lambda event: process_key_vectors(event, freqs, rinterval, sinterval, receiverPoints, sourcePoints, plotParams, 'cmplx_left')) # plot the right singular vectors fig_rvec, ax_rvec_r, ax_rvec_i = setFigure(num_axes=2, mode=plotParams['view_mode']) ax_rvec_r.volume = V.real ax_rvec_i.volume = V.imag ax_rvec_r.index = 0 ax_rvec_i.index = 0 fig_rvec.suptitle('Right-Singular Vector', color=ax_rvec_r.titlecolor, fontsize=16) fig_rvec.subplots_adjust(bottom=0.27, top=0.86) rightTitle_r = vector_title('right', ax_rvec_r.index + 1, 'real') rightTitle_i = vector_title('right', ax_rvec_i.index + 1, 'imag') for ax, title in zip([ax_rvec_r, ax_rvec_i], [rightTitle_r, rightTitle_i]): right_im = plotFreqVectors(ax, ax.volume[:, :, ax.index], freqs, sinterval, sourcePoints, title, 'right', plotParams) rp0 = ax_rvec_r.get_position().get_points().flatten() rp1 = ax_rvec_i.get_position().get_points().flatten() right_cax = fig_rvec.add_axes([rp0[0], 0.12, rp1[2]-rp0[0], 0.03]) rcbar = fig_rvec.colorbar(right_im, right_cax, orientation='horizontal') rcbar.outline.set_edgecolor(ax_rvec_r.cbaredgecolor) rcbar.ax.tick_params(axis='x', colors=ax_rvec_r.labelcolor) rcbar.ax.yaxis.set_major_formatter(FormatStrFormatter('%.1f')) rcbar.set_label('Amplitude', labelpad=5, rotation=0, fontsize=12, color=ax_lvec_r.labelcolor) fig_rvec.canvas.mpl_connect('key_press_event', lambda event: process_key_vectors(event, freqs, rinterval, sinterval, receiverPoints, sourcePoints, plotParams, 'cmplx_right')) else: # domain == 'time' fig_vec, ax_lvec, ax_rvec = setFigure(num_axes=2, mode=plotParams['view_mode']) ax_lvec.volume = U ax_lvec.index = 0 leftTitle = vector_title('left', ax_lvec.index + 1) plotWiggles(ax_lvec, ax_lvec.volume[:, :, ax_lvec.index], times, rinterval, receiverPoints, leftTitle, 'left', plotParams) ax_rvec.volume = V ax_rvec.index = 0 rightTitle = vector_title('right', ax_rvec.index + 1) plotWiggles(ax_rvec, ax_rvec.volume[:, :, ax_rvec.index], times, sinterval, sourcePoints, rightTitle, 'right', plotParams) fig_vec.tight_layout() fig_vec.canvas.mpl_connect('key_press_event', lambda event: process_key_vectors(event, times, rinterval, sinterval, receiverPoints, sourcePoints, plotParams)) #============================================================================== # plot the singular values # figure and axis for singular values fig_vals, ax_vals = setFigure(num_axes=1, mode=plotParams['view_mode']) n = np.arange(1, k + 1, 1) kappa = s[0] / s[-1] # condition number = max(s) / min(s) ax_vals.plot(n, s, '.', clip_on=False, markersize=9, label=r'Condition Number: %0.1e' %(kappa), color=ax_vals.pointcolor) ax_vals.set_xlabel('n', color=ax_vals.labelcolor) ax_vals.set_ylabel('$\sigma_n$', color=ax_vals.labelcolor) legend = ax_vals.legend(title='Singular Values', loc='upper center', bbox_to_anchor=(0.5, 1.25), markerscale=0, handlelength=0, handletextpad=0, fancybox=True, shadow=True, fontsize='large') legend.get_title().set_fontsize('large') ax_vals.set_xlim([1, k]) ax_vals.set_ylim(bottom=0) ax_vals.locator_params(axis='y', nticks=6) ax_vals.ticklabel_format(style='sci', axis='y', scilimits=(0,0)) fig_vals.tight_layout() fig_vals.savefig('singularValues.' + args.format, format=args.format, bbox_inches='tight', facecolor=fig_vals.get_facecolor()) plt.show()
def cli(): parser = argparse.ArgumentParser() parser.add_argument('--data', action='store_true', help='Plot the recorded data. (Default)') parser.add_argument('--testfunc', action='store_true', help='Plot the simulated test functions.') parser.add_argument('--tu', type=str, help='Specify the time units (e.g., \'s\' or \'ms\').') parser.add_argument( '--au', type=str, help='Specify the amplitude units (e.g., \'m\' or \'mm\').') parser.add_argument( '--pclip', type=float, help= '''Specify the percentage (0-1) of the peak amplitude to display. This parameter is used for pcolormesh plots only. Default is set to 1.''' ) parser.add_argument( '--title', type=str, help='''Specify a title for the wiggle plot. Default title is \'Data\' if \'--data\' is passed and 'Test Function' if \'--testfunc\' is passed.''') parser.add_argument( '--format', '-f', type=str, default='pdf', choices=['png', 'pdf', 'ps', 'eps', 'svg'], help= '''Specify the image format of the saved file. Accepted formats are png, pdf, ps, eps, and svg. Default format is set to pdf.''') parser.add_argument( '--map', action='store_true', help= '''Plot a map of the receiver and source/sampling point locations. The current source/sampling point will be highlighted. The boundary of the scatterer will also be shown if available.''') parser.add_argument( '--mode', type=str, choices=['light', 'dark'], required=False, help='''Specify whether to view plots in light mode for daytime viewing or dark mode for nighttime viewing. Mode must be either \'light\' or \'dark\'.''') args = parser.parse_args() #============================================================================== # if a plotParams.pkl file already exists, load relevant parameters if Path('plotParams.pkl').exists(): plotParams = pickle.load(open('plotParams.pkl', 'rb')) # update parameters for wiggle plots based on passed arguments if args.mode is not None: plotParams['view_mode'] = args.mode if args.tu is not None: plotParams['tu'] = args.tu if args.au is not None: plotParams['au'] = args.au if args.pclip is not None: if args.pclip >= 0 and args.pclip <= 1: plotParams['pclip'] = args.pclip else: print( textwrap.dedent(''' Warning: Invalid value passed to argument \'--pclip\'. Value must be between 0 and 1. ''')) if args.title is not None: if args.data: plotParams['data_title'] = args.title elif args.testfunc: plotParams['tf_title'] = args.title else: # create a plotParams dictionary file with default values plotParams = default_params() # update parameters for wiggle plots based on passed arguments if args.mode is not None: plotParams['view_mode'] = args.mode if args.tu is not None: plotParams['tu'] = args.tu if args.au is not None: plotParams['au'] = args.au if args.title is not None: if args.data: plotParams['data_title'] = args.title elif args.testfunc: plotParams['tf_title'] = args.title pickle.dump(plotParams, open('plotParams.pkl', 'wb'), pickle.HIGHEST_PROTOCOL) #============================================================================== # Load the relevant data to plot datadir = np.load('datadir.npz') receiverPoints = np.load(str(datadir['receivers'])) recordingTimes = np.load(str(datadir['recordingTimes'])) dt = recordingTimes[1] - recordingTimes[0] if 'scatterer' in datadir: scatterer = np.load(str(datadir['scatterer'])) else: scatterer = None if Path('window.npz').exists(): windowDict = np.load('window.npz') # Apply the receiver window rstart = windowDict['rstart'] rstop = windowDict['rstop'] rstep = windowDict['rstep'] # Apply the time window tstart = windowDict['tstart'] tstop = windowDict['tstop'] tstep = windowDict['tstep'] # Convert time window parameters to corresponding array indices Tstart = int(round(tstart / dt)) Tstop = int(round(tstop / dt)) else: rstart = 0 rstop = receiverPoints.shape[0] rstep = 1 tstart = recordingTimes[0] tstop = recordingTimes[-1] Tstart = 0 Tstop = len(recordingTimes) tstep = 1 rinterval = np.arange(rstart, rstop, rstep) receiverPoints = receiverPoints[rinterval, :] tinterval = np.arange(Tstart, Tstop, tstep) if all(v is True for v in [args.data, args.testfunc]): # User specified both data and testfuncs for plotting # Send error message and exit. sys.exit( textwrap.dedent(''' Error: Cannot plot both recorded data and simulated test functions. Use vzwiggles --data to plot the recorded data or vzwiggles --testfuncs to plot the simulated test functions. ''')) elif all(v is not True for v in [args.data, args.testfunc]): # User did not specify which wiggles to plot. # Plot recorded data by default. # load the 3D data array into variable 'X' # X[receiver, time, source] wiggleType = 'data' if Path('noisyData.npz').exists(): userResponded = False print( textwrap.dedent(''' Detected that band-limited noise has been added to the data array. Would you like to plot the noisy data? ([y]/n) Enter 'q/quit' exit the program. ''')) while userResponded == False: answer = input('Action: ') if answer == '' or answer == 'y' or answer == 'yes': print('Proceeding with plot of noisy data...') # read in the noisy data array X = np.load('noisyData.npz')['noisyData'] userResponded = True elif answer == 'n' or answer == 'no': print('Proceeding with plot of noise-free data...') # read in the recorded data array X = np.load(str(datadir['recordedData'])) userResponded = True elif answer == 'q' or answer == 'quit': sys.exit('Exiting program.\n') else: print( 'Invalid response. Please enter \'y/yes\', \'n\no\', or \'q/quit\'.' ) else: # read in the recorded data array X = np.load(str(datadir['recordedData'])) time = recordingTimes if 'sources' in datadir: sourcePoints = np.load(str(datadir['sources'])) else: sourcePoints = None X = X[rinterval, :, :] elif args.data: # load the 3D data array into variable 'X' # X[receiver, time, source] wiggleType = 'data' if Path('noisyData.npz').exists(): userResponded = False print( textwrap.dedent(''' Detected that band-limited noise has been added to the data array. Would you like to plot the noisy data? ([y]/n) Enter 'q/quit' exit the program. ''')) while userResponded == False: answer = input('Action: ') if answer == '' or answer == 'y' or answer == 'yes': print('Proceeding with plot of noisy data...') # read in the noisy data array X = np.load('noisyData.npz')['noisyData'] userResponded = True elif answer == 'n' or answer == 'no': print('Proceeding with plot of noise-free data...') # read in the recorded data array X = np.load(str(datadir['recordedData'])) userResponded = True elif answer == 'q' or answer == 'quit': sys.exit('Exiting program.\n') else: print( 'Invalid response. Please enter \'y/yes\', \'n\no\', or \'q/quit\'.' ) else: # read in the recorded data array X = np.load(str(datadir['recordedData'])) time = recordingTimes if 'sources' in datadir: sourcePoints = np.load(str(datadir['sources'])) else: sourcePoints = None X = X[rinterval, :, :] elif args.testfunc: wiggleType = 'testfunc' if 'testFuncs' in datadir and not Path('VZTestFuncs.npz').exists(): X = np.load(str(datadir['testFuncs'])) time = np.load(str(datadir['convolutionTimes'])) sourcePoints = np.load(str(datadir['samplingPoints'])) X = X[rinterval, :, :] elif not 'testFuncs' in datadir and Path('VZTestFuncs.npz').exists(): print( '\nDetected that free-space test functions have already been computed...' ) print( 'Checking consistency with current space-time sampling grid...' ) TFDict = np.load('VZTestFuncs.npz') samplingGrid = np.load('samplingGrid.npz') x = samplingGrid['x'] y = samplingGrid['y'] if 'z' in samplingGrid: z = samplingGrid['z'] else: z = None tau = samplingGrid['tau'] pulse = lambda t: pulseFun.pulse(t) velocity = pulseFun.velocity peakFreq = pulseFun.peakFreq peakTime = pulseFun.peakTime # set up the convolution times based on the length of the recording time interval time = recordingTimes[tinterval] T = time[-1] - time[0] time = np.linspace(-T, T, 2 * len(time) - 1) if samplingIsCurrent(TFDict, receiverPoints, time, velocity, tau, x, y, z, peakFreq, peakTime): print('Moving forward to plot test functions...') X = TFDict['TFarray'] sourcePoints = TFDict['samplingPoints'] else: if tau[0] != 0: tu = plotParams['tu'] if tu != '': print( 'Recomputing test functions for focusing time %0.2f %s...' % (tau[0], tu)) else: print( 'Recomputing test functions for focusing time %0.2f...' % (tau[0])) X, sourcePoints = sampleSpace(receiverPoints, time - tau[0], velocity, x, y, z, pulse) else: print('Recomputing test functions...') X, sourcePoints = sampleSpace(receiverPoints, time, velocity, x, y, z, pulse) if z is None: np.savez('VZTestFuncs.npz', TFarray=X, time=time, receivers=receiverPoints, peakFreq=peakFreq, peakTime=peakTime, velocity=velocity, x=x, y=y, tau=tau, samplingPoints=sourcePoints) else: np.savez('VZTestFuncs.npz', TFarray=X, time=time, receivers=receiverPoints, peakFreq=peakFreq, peakTime=peakTime, velocity=velocity, x=x, y=y, z=z, tau=tau, samplingPoints=sourcePoints) elif 'testFuncs' in datadir and Path('VZTestFuncs.npz').exists(): userResponded = False print( textwrap.dedent(''' Two files are available containing simulated test functions. Enter '1' to view the user-provided test functions. (Default) Enter '2' to view the test functions computed by Vezda. Enter 'q/quit' to exit. ''')) while userResponded == False: answer = input('Action: ') if answer == '' or answer == '1': X = np.load(str(datadir['testFuncs'])) time = np.load(str(datadir['convolutionTimes'])) sourcePoints = np.load(str(datadir['samplingPoints'])) X = X[rinterval, :, :] userResponded = True break elif answer == '2': print( '\nDetected that free-space test functions have already been computed...' ) print( 'Checking consistency with current spatial sampling grid...' ) TFDict = np.load('VZTestFuncs.npz') samplingGrid = np.load('samplingGrid.npz') x = samplingGrid['x'] y = samplingGrid['y'] if 'z' in samplingGrid: z = samplingGrid['z'] else: z = None tau = samplingGrid['tau'] pulse = lambda t: pulseFun.pulse(t) velocity = pulseFun.velocity peakFreq = pulseFun.peakFreq peakTime = pulseFun.peakTime # set up the convolution times based on the length of the recording time interval time = recordingTimes[tinterval] T = time[-1] - time[0] time = np.linspace(-T, T, 2 * len(time) - 1) if samplingIsCurrent(TFDict, receiverPoints, time, velocity, tau, x, y, z, peakFreq, peakTime): print('Moving forward to plot test functions...') X = TFDict['TFarray'] sourcePoints = TFDict['samplingPoints'] else: if tau[0] != 0: tu = plotParams['tu'] if tu != '': print( 'Recomputing test functions for focusing time %0.2f %s...' % (tau[0], tu)) else: print( 'Recomputing test functions for focusing time %0.2f...' % (tau[0])) X, sourcePoints = sampleSpace( receiverPoints, time - tau[0], velocity, x, y, z, pulse) else: print('Recomputing test functions...') X, sourcePoints = sampleSpace( receiverPoints, time, velocity, x, y, z, pulse) if z is None: np.savez('VZTestFuncs.npz', TFarray=X, time=time, receivers=receiverPoints, peakFreq=peakFreq, peakTime=peakTime, velocity=velocity, x=x, y=y, tau=tau, samplingPoints=sourcePoints) else: np.savez('VZTestFuncs.npz', TFarray=X, time=time, receivers=receiverPoints, peakFreq=peakFreq, peakTime=peakTime, velocity=velocity, x=x, y=y, z=z, tau=tau, samplingPoints=sourcePoints) userResponded = True elif answer == 'q' or answer == 'quit': sys.exit('Exiting program.') else: print( 'Invalid response. Please enter \'1\', \'2\', or \'q/quit\'.' ) else: print( '\nComputing free-space test functions for the current space-time sampling grid...' ) # set up the convolution times based on the length of the recording time interval time = recordingTimes[tinterval] T = time[-1] - time[0] time = np.linspace(-T, T, 2 * len(time) - 1) samplingGrid = np.load('samplingGrid.npz') x = samplingGrid['x'] y = samplingGrid['y'] if 'z' in samplingGrid: z = samplingGrid['z'] else: z = None tau = samplingGrid['tau'] pulse = lambda t: pulseFun.pulse(t) velocity = pulseFun.velocity peakFreq = pulseFun.peakFreq peakTime = pulseFun.peakTime if tau[0] != 0: tu = plotParams['tu'] if tu != '': print( 'Computing test functions for focusing time %0.2f %s...' % (tau[0], tu)) else: print( 'Computing test functions for focusing time %0.2f...' % (tau[0])) X, sourcePoints = sampleSpace(receiverPoints, time - tau[0], velocity, x, y, z, pulse) else: X, sourcePoints = sampleSpace(receiverPoints, time, velocity, x, y, z, pulse) if z is None: np.savez('VZTestFuncs.npz', TFarray=X, time=time, receivers=receiverPoints, peakFreq=peakFreq, peakTime=peakTime, velocity=velocity, x=x, y=y, tau=tau, samplingPoints=sourcePoints) else: np.savez('VZTestFuncs.npz', TFarray=X, time=time, receivers=receiverPoints, peakFreq=peakFreq, peakTime=peakTime, velocity=velocity, x=x, y=y, z=z, tau=tau, samplingPoints=sourcePoints) #============================================================================== if Path('window.npz').exists() and wiggleType == 'data': t0 = tstart tf = tstop # Apply the source window sstart = windowDict['sstart'] sstop = windowDict['sstop'] sstep = windowDict['sstep'] else: t0 = time[0] tf = time[-1] sstart = 0 sstop = X.shape[2] sstep = 1 sinterval = np.arange(sstart, sstop, sstep) X = X[:, :, sinterval] if sourcePoints is not None: sourcePoints = sourcePoints[sinterval, :] # increment source/recording interval and receiver interval to be consistent # with one-based indexing (i.e., count from one instead of zero) sinterval += 1 rinterval += 1 rstart += 1 Ns = X.shape[2] remove_keymap_conflicts({'left', 'right', 'up', 'down', 'save'}) if args.map: fig, ax1, ax2 = setFigure(num_axes=2, mode=plotParams['view_mode'], ax2_dim=receiverPoints.shape[1]) ax1.volume = X ax1.index = Ns // 2 title = wave_title(ax1.index, sinterval, sourcePoints, wiggleType, plotParams) plotWiggles(ax1, X[:, :, ax1.index], time, t0, tf, rstart, rinterval, receiverPoints, title, wiggleType, plotParams) ax2.index = ax1.index plotMap(ax2, ax2.index, receiverPoints, sourcePoints, scatterer, wiggleType, plotParams) plt.tight_layout() fig.canvas.mpl_connect( 'key_press_event', lambda event: process_key_waves( event, time, t0, tf, rstart, rinterval, sinterval, receiverPoints, sourcePoints, Ns, scatterer, args.map, wiggleType, plotParams)) else: fig, ax = setFigure(num_axes=1, mode=plotParams['view_mode']) ax.volume = X ax.index = Ns // 2 title = wave_title(ax.index, sinterval, sourcePoints, wiggleType, plotParams) plotWiggles(ax, X[:, :, ax.index], time, t0, tf, rstart, rinterval, receiverPoints, title, wiggleType, plotParams) plt.tight_layout() fig.canvas.mpl_connect( 'key_press_event', lambda event: process_key_waves( event, time, t0, tf, rstart, rinterval, sinterval, receiverPoints, sourcePoints, Ns, scatterer, args.map, wiggleType, plotParams)) plt.show()
def cli(): parser = argparse.ArgumentParser() parser.add_argument( '--format', '-f', type=str, default='pdf', choices=['png', 'pdf', 'ps', 'eps', 'svg'], help= '''specify the image format of the saved file. Accepted formats are png, pdf, ps, eps, and svg. Default format is set to pdf.''') parser.add_argument( '--mode', type=str, choices=['light', 'dark'], required=False, help='''Specify whether to view plots in light mode for daytime viewing or dark mode for nighttime viewing. Mode must be either \'light\' or \'dark\'.''') args = parser.parse_args() #============================================================================== def process_key_picard(event, tstart, tstop, rinterval, receiverPoints, scatterer, args, recordingTimes): if args.map: fig = event.canvas.figure ax1 = fig.axes[0] ax2 = fig.axes[1] if event.key == 'left' or event.key == 'down': previous_slice(ax1, tstart, tstop, rinterval, args, recordingTimes, receiverPoints) previous_source(ax2, tstart, tstop, rinterval, args, recordingTimes, receiverPoints) elif event.key == 'right' or event.key == 'up': next_slice(ax1, tstart, tstop, rinterval, args, recordingTimes, receiverPoints) next_source(ax1, tstart, tstop, rinterval, args, recordingTimes, receiverPoints) else: fig = event.canvas.figure ax = fig.axes[0] if event.key == 'left' or event.key == 'down': previous_slice(ax, tstart, tstop, rinterval, args, recordingTimes, receiverPoints) elif event.key == 'right' or event.key == 'up': next_slice(ax, tstart, tstop, rinterval, args, recordingTimes, receiverPoints) fig.canvas.draw() #============================================================================== try: s = np.load('singularValues.npy') U = np.load('leftVectors.npy') except FileNotFoundError: s = None U = None if any(v is None for v in [s, U]): sys.exit( textwrap.dedent(''' A singular-value decomposition needs to be computed before any spectral analysis can be performed. Enter: vzsvd --help from the command line for more information on how to compute a singular-value decomposition. ''')) try: TFDict = np.load('VZTestFuncs.npz') except FileNotFoundError: TFDict = None if TFDict is None: sys.exit(textwrap.dedent(''' ''')) k = s.size s = np.reshape(s, (k, 1)) # Compute coefficients for Picard plot TFarray = TFDict['TFarray'] TF = TFarray[:, :, 0, 0] Nr, Nt = TF.shape b = np.reshape(TF, (Nt * Nr, 1)) c = np.abs(U.T @ b) d = np.divide(c, s) #============================================================================== datadir = np.load('datadir.npz') receiverPoints = np.load(str(datadir['receivers'])) sourcePoints = np.load(str(datadir['sources'])) if 'scatterer' in datadir: scatterer = np.load(str(datadir['scatterer'])) else: scatterer = None if Path('window.npz').exists(): windowDict = np.load('window.npz') # Set the receiver window for receiverPoints rstart = windowDict['rstart'] rstop = windowDict['rstop'] rstep = windowDict['rstep'] # Set the source window for sourcePoints sstart = windowDict['sstart'] sstop = windowDict['sstop'] sstep = windowDict['sstep'] else: rstart = 0 rstop = Nr rstep = 1 sstart = 0 sstop = sourcePoints.shape[0] sstep = 1 # pltrstart is used to plot the correct receivers for # the simulated test function computed by Vezda pltrstart = rstart pltsstart = sstart rinterval = np.arange(rstart, rstop, rstep) receiverPoints = receiverPoints[rinterval, :] sinterval = np.arange(sstart, sstop, sstep) sourcePoints = sourcePoints[sinterval, :] #============================================================================== remove_keymap_conflicts({'left', 'right', 'up', 'down', 'save'}) if Path('plotParams.pkl').exists(): plotParams = pickle.load(open('plotParams.pkl', 'rb')) else: plotParams = default_params() if args.mode is not None: plotParams['view_mode'] = args.mode pickle.dump(plotParams, open('plotParams.pkl', 'wb'), pickle.HIGHEST_PROTOCOL) fig, ax = setFigure(num_axes=1, mode=plotParams['view_mode']) # ax1.index = k // 2 # PicardPlot(ax1, s, c, d) # if receiverPoints.shape[1] == 2: # ax2 = fig.add_subplot(122) # elif receiverPoints.shape[1] == 3: # ax2 = fig.add_subplot(122, projection='3d') # ax2.index = ax1.index # map_plot(ax2, ax2.index, args, rinterval, receiverPoints, sourcePoints, scatterer) # plt.tight_layout() # #fig.canvas.mpl_connect('key_press_event', lambda event: process_key(event, tstart, tstop, rinterval, # # receiverPoints, sourcePoints, scatterer, # # args, recordingTimes)) ax.index = k // 2 PicardPlot(ax, s, c, d) plt.tight_layout() fig.savefig('Picard.' + args.format, format=args.format, bbox_inches='tight') plt.show()
def cli(): parser = argparse.ArgumentParser() parser.add_argument('--data', action='store_true', help='Plot the frequency spectrum of the recorded data. (Default)') parser.add_argument('--testfunc', action='store_true', help='Plot the frequency spectrum of the simulated test functions.') parser.add_argument('--power', action='store_true', help='''Plot the mean power spectrum of the input signals. Default is to plot the mean amplitude spectrum of the Fourier transform.''') parser.add_argument('--fmin', type=float, help='Specify the minimum frequency of the amplitude/power spectrum plot. Default is set to 0.') parser.add_argument('--fmax', type=float, help='''Specify the maximum frequency of the amplitude/power spectrum plot. Default is set to the maximum frequency bin based on the length of the time signal.''') parser.add_argument('--fu', type=str, help='Specify the frequency units (e.g., Hz)') parser.add_argument('--format', '-f', type=str, default='pdf', choices=['png', 'pdf', 'ps', 'eps', 'svg'], help='''specify the image format of the saved file. Accepted formats are png, pdf, ps, eps, and svg. Default format is set to pdf.''') parser.add_argument('--mode', type=str, choices=['light', 'dark'], required=False, help='''Specify whether to view plots in light mode for daytime viewing or dark mode for nighttime viewing. Mode must be either \'light\' or \'dark\'.''') args = parser.parse_args() #============================================================================== # Get time window parameters tinterval, tstep, dt = get_user_windows()[1:4] datadir = np.load('datadir.npz') recordingTimes = np.load(str(datadir['recordingTimes'])) recordingTimes = recordingTimes[tinterval] # Used for getting time and frequency units if Path('plotParams.pkl').exists(): plotParams = pickle.load(open('plotParams.pkl', 'rb')) else: plotParams = default_params() if all(v is True for v in [args.data, args.testfunc]): sys.exit(textwrap.dedent( ''' Error: Cannot plot frequency spectrum of both recorded data and simulated test functions. Use vzspectra --data to plot the frequency spectrum of the recorded data or vzspectra --testfuncs to plot the frequency spectrum of the simulated test functions. ''')) elif (args.data and not args.testfunc) or all(v is not True for v in [args.data, args.testfunc]): # default is to plot spectra of data if user does not specify either args.data or args.testfunc X = load_data(domain='time', verbose=True) elif not args.data and args.testfunc: if 'testFuncs' not in datadir and not Path('VZTestFuncs.npz').exists(): X = load_test_funcs(domain='time', medium='constant', verbose=True) elif 'testFuncs' in datadir and not Path('VZTestFuncs.npz').exists(): X = load_test_funcs(domain='time', medium='variable', verbose=True) elif not 'testFuncs' in datadir and Path('VZTestFuncs.npz').exists(): X = load_test_funcs(domain='time', medium='constant', verbose=True) elif 'testFuncs' in datadir and Path('VZTestFuncs.npz').exists(): userResponded = False print(textwrap.dedent( ''' Two files are available containing simulated test functions. Enter '1' to view the user-provided test functions. (Default) Enter '2' to view the test functions computed by Vezda. Enter 'q/quit' to exit. ''')) while userResponded == False: answer = input('Action: ') if answer == '' or answer == '1': X = load_test_funcs(domain='time', medium='variable', verbose=True) userResponded = True break elif answer == '2': X = load_test_funcs(domain='time', medium='constant', verbose=True) userResponded = True break elif answer == 'q' or answer == 'quit': sys.exit('Exiting program.') else: print('Invalid response. Please enter \'1\', \'2\', or \'q/quit\'.') #============================================================================== # compute spectra freqs, amplitudes = compute_spectrum(X, tstep * dt, args.power) if args.power: plotLabel = 'power' plotParams['freq_title'] = 'Mean Power Spectrum' plotParams['freq_ylabel'] = 'Power' else: plotLabel = 'amplitude' plotParams['freq_title'] = 'Mean Amplitude Spectrum' plotParams['freq_ylabel'] = 'Amplitude' if args.data or all(v is not True for v in [args.data, args.testfunc]): plotParams['freq_title'] += ' [' + plotParams['data_title'] + ']' elif args.testfunc: plotParams['freq_title'] += ' [' + plotParams['tf_title'] + 's]' if args.fmin is not None: if args.fmin >= 0: if args.fmax is not None: if args.fmax > args.fmin: plotParams['fmin'] = args.fmin plotParams['fmax'] = args.fmax else: sys.exit(textwrap.dedent( ''' RelationError: The maximum frequency of the %s spectrum plot must be greater than the mininum frequency. ''' %(plotLabel))) else: fmax = plotParams['fmax'] if fmax > args.fmin: plotParams['fmin'] = args.fmin else: sys.exit(textwrap.dedent( ''' RelationError: The specified minimum frequency of the %s spectrum plot must be less than the maximum frequency. ''' %(plotLabel))) else: sys.exit(textwrap.dedent( ''' ValueError: The specified minimum frequency of the %s spectrum plot must be nonnegative. ''' %(plotLabel))) #=============================================================================== if args.fmax is not None: if args.fmin is not None: if args.fmin >= 0: if args.fmax > args.fmin: plotParams['fmin'] = args.fmin plotParams['fmax'] = args.fmax else: sys.exit(textwrap.dedent( ''' RelationError: The maximum frequency of the %s spectrum plot must be greater than the mininum frequency. ''' %(plotLabel))) else: sys.exit(textwrap.dedent( ''' ValueError: The specified minimum frequency of the %s spectrum plot must be nonnegative. ''' %(plotLabel))) else: fmin = plotParams['fmin'] if args.fmax > fmin: plotParams['fmax'] = args.fmax else: sys.exit(textwrap.dedent( ''' RelationError: The specified maximum frequency of the %s spectrum plot must be greater than the minimum frequency. ''' %(plotLabel))) elif plotParams['fmax'] is None: plotParams['fmax'] = np.max(freqs) #=================================================================================== if args.fu is not None: plotParams['fu'] = args.fu if args.mode is not None: plotParams['view_mode'] = args.mode pickle.dump(plotParams, open('plotParams.pkl', 'wb'), pickle.HIGHEST_PROTOCOL) fig, ax = setFigure(num_axes=1, mode=plotParams['view_mode']) ax.plot(freqs, amplitudes, color=ax.linecolor, linewidth=ax.linewidth) ax.set_title(plotParams['freq_title'], color=ax.titlecolor) # get frequency units from plotParams fu = plotParams['fu'] fmin = plotParams['fmin'] fmax = plotParams['fmax'] if fu != '': ax.set_xlabel('Frequency (%s)' %(fu), color=ax.labelcolor) else: ax.set_xlabel('Frequency', color=ax.labelcolor) ax.set_ylabel(plotParams['freq_ylabel'], color=ax.labelcolor) ax.set_xlim([fmin, fmax]) ax.set_ylim(bottom=0) ax.fill_between(freqs, 0, amplitudes, where=(amplitudes > 0), color='m', alpha=ax.alpha) ax.locator_params(axis='y', nticks=6) ax.ticklabel_format(style='sci', axis='y', scilimits=(0,0)) plt.tight_layout() fig.savefig(plotLabel + 'Spectrum.' + args.format, format=args.format, bbox_inches='tight', facecolor=fig.get_facecolor()) plt.show()
def cli(): parser = argparse.ArgumentParser() parser.add_argument( '--data', action='store_true', help='Plot the frequency spectrum of the recorded data. (Default)') parser.add_argument( '--testfunc', action='store_true', help='Plot the frequency spectrum of the simulated test functions.') parser.add_argument( '--power', action='store_true', help= '''Plot the mean power spectrum of the input signals. Default is to plot the mean amplitude spectrum of the Fourier transform.''') parser.add_argument( '--fmin', type=float, help= 'Specify the minimum frequency of the amplitude/power spectrum plot. Default is set to 0.' ) parser.add_argument( '--fmax', type=float, help= '''Specify the maximum frequency of the amplitude/power spectrum plot. Default is set to the maximum frequency bin based on the length of the time signal.''' ) parser.add_argument('--fu', type=str, help='Specify the frequency units (e.g., Hz)') parser.add_argument( '--format', '-f', type=str, default='pdf', choices=['png', 'pdf', 'ps', 'eps', 'svg'], help= '''specify the image format of the saved file. Accepted formats are png, pdf, ps, eps, and svg. Default format is set to pdf.''') parser.add_argument( '--mode', type=str, choices=['light', 'dark'], required=False, help='''Specify whether to view plots in light mode for daytime viewing or dark mode for nighttime viewing. Mode must be either \'light\' or \'dark\'.''') args = parser.parse_args() #============================================================================== # Load the recording times from the data directory datadir = np.load('datadir.npz') receiverPoints = np.load(str(datadir['receivers'])) recordingTimes = np.load(str(datadir['recordingTimes'])) dt = recordingTimes[1] - recordingTimes[0] if Path('window.npz').exists(): windowDict = np.load('window.npz') # Apply the receiver window rstart = windowDict['rstart'] rstop = windowDict['rstop'] rstep = windowDict['rstep'] # Apply the time window tstart = windowDict['tstart'] tstop = windowDict['tstop'] tstep = windowDict['tstep'] # Convert time window parameters to corresponding array indices Tstart = int(round(tstart / dt)) Tstop = int(round(tstop / dt)) else: rstart = 0 rstop = receiverPoints.shape[0] rstep = 1 tstart = recordingTimes[0] tstop = recordingTimes[-1] Tstart = 0 Tstop = len(recordingTimes) tstep = 1 # Apply the receiver window rinterval = np.arange(rstart, rstop, rstep) receiverPoints = receiverPoints[rinterval, :] # Apply the time window tinterval = np.arange(Tstart, Tstop, tstep) recordingTimes = recordingTimes[tinterval] # Used for getting time and frequency units if Path('plotParams.pkl').exists(): plotParams = pickle.load(open('plotParams.pkl', 'rb')) else: plotParams = default_params() if all(v is True for v in [args.data, args.testfunc]): sys.exit( textwrap.dedent(''' Error: Cannot plot frequency spectrum of both recorded data and simulated test functions. Use vzspectra --data to plot the frequency spectrum of the recorded data or vzspectra --testfuncs to plot the frequency spectrum of the simulated test functions. ''')) elif (args.data and not args.testfunc) or all( v is not True for v in [args.data, args.testfunc]): # default is to plot spectra of data if user does not specify either args.data or args.testfunc if Path('noisyData.npz').exists(): userResponded = False print( textwrap.dedent(''' Detected that band-limited noise has been added to the data array. Would you like to plot the amplitude/power spectrum of the noisy data? ([y]/n) Enter 'q/quit' exit the program. ''')) while userResponded == False: answer = input('Action: ') if answer == '' or answer == 'y' or answer == 'yes': print('Proceeding with noisy data...') # read in the noisy data array noisy = True X = np.load('noisyData.npz')['noisyData'] userResponded = True elif answer == 'n' or answer == 'no': print('Proceeding with noise-free data...') # read in the recorded data array noisy = False X = np.load(str(datadir['recordedData'])) userResponded = True elif answer == 'q' or answer == 'quit': sys.exit('Exiting program.\n') else: print( 'Invalid response. Please enter \'y/yes\', \'n\no\', or \'q/quit\'.' ) else: # read in the recorded data array noisy = False X = np.load(str(datadir['recordedData'])) # Load the windowing parameters for the receiver and time axes of # the 3D data array if Path('window.npz').exists(): print('Detected user-specified window:\n') # For display/printing purposes, count receivers with one-based # indexing. This amounts to incrementing the rstart parameter by 1 print('window @ receivers : start =', rstart + 1) print('window @ receivers : stop =', rstop) print('window @ receivers : step =', rstep, '\n') tu = plotParams['tu'] if tu != '': print('window @ time : start = %0.2f %s' % (tstart, tu)) print('window @ time : stop = %0.2f %s' % (tstop, tu)) else: print('window @ time : start =', tstart) print('window @ time : stop =', tstop) print('window @ time : step =', tstep, '\n') # Apply the source window slabel = windowDict['slabel'] sstart = windowDict['sstart'] sstop = windowDict['sstop'] sstep = windowDict['sstep'] sinterval = np.arange(sstart, sstop, sstep) # For display/printing purposes, count recordings/sources with one-based # indexing. This amounts to incrementing the sstart parameter by 1 print('window @ %s : start = %s' % (slabel, sstart + 1)) print('window @ %s : stop = %s' % (slabel, sstop)) print('window @ %s : step = %s\n' % (slabel, sstep)) print('Applying window to data volume...') X = X[rinterval, :, :] X = X[:, tinterval, :] X = X[:, :, sinterval] # Apply tapered cosine (Tukey) window to time signals. # This ensures the fast fourier transform (FFT) used in # the definition of the matrix-vector product below is # acting on a function that is continuous at its edges. Nt = X.shape[1] peakFreq = pulseFun.peakFreq # Np : Number of samples in the dominant period T = 1 / peakFreq Np = int(round(1 / (tstep * dt * peakFreq))) # alpha is set to taper over 6 of the dominant period of the # pulse function (3 periods from each end of the signal) alpha = 6 * Np / Nt print('Tapering time signals with Tukey window: %d' % (int(round(alpha * 100))) + '%') TukeyWindow = tukey(Nt, alpha) X *= TukeyWindow[None, :, None] elif not args.data and args.testfunc: if Path('samplingGrid.npz').exists(): samplingGrid = np.load('samplingGrid.npz') x = samplingGrid['x'] y = samplingGrid['y'] tau = samplingGrid['tau'] if 'z' in samplingGrid: z = samplingGrid['z'] else: z = None else: sys.exit( textwrap.dedent(''' A sampling grid needs to be set up and test functions computed before their Fourier spectrum can be plotted. Enter: vzgrid --help from the command-line for more information on how to set up a sampling grid. ''')) pulse = lambda t: pulseFun.pulse(t) velocity = pulseFun.velocity peakFreq = pulseFun.peakFreq peakTime = pulseFun.peakTime if Path('VZTestFuncs.npz').exists(): print( '\nDetected that free-space test functions have already been computed...' ) print( 'Checking consistency with current space-time sampling grid...' ) TFDict = np.load('VZTestFuncs.npz') if samplingIsCurrent(TFDict, receiverPoints, recordingTimes, velocity, tau, x, y, z, peakFreq, peakTime): X = TFDict['TFarray'] sourcePoints = TFDict['samplingPoints'] else: print('Recomputing test functions...') if tau[0] != 0: tu = plotParams['tu'] if tu != '': print( 'Recomputing test functions for focusing time %0.2f %s...' % (tau[0], tu)) else: print( 'Recomputing test functions for focusing time %0.2f...' % (tau[0])) X, sourcePoints = sampleSpace(receiverPoints, recordingTimes - tau[0], velocity, x, y, z, pulse) else: X, sourcePoints = sampleSpace(receiverPoints, recordingTimes, velocity, x, y, z, pulse) if z is None: np.savez('VZTestFuncs.npz', TFarray=X, time=recordingTimes, receivers=receiverPoints, peakFreq=peakFreq, peakTime=peakTime, velocity=velocity, x=x, y=y, tau=tau, samplingPoints=sourcePoints) else: np.savez('VZTestFuncs.npz', TFarray=X, time=recordingTimes, receivers=receiverPoints, peakFreq=peakFreq, peakTime=peakTime, velocity=velocity, x=x, y=y, z=z, tau=tau, samplingPoints=sourcePoints) else: print( '\nComputing free-space test functions for the current space-time sampling grid...' ) if tau[0] != 0: if tu != '': print( 'Computing test functions for focusing time %0.2f %s...' % (tau[0], tu)) else: print( 'Computing test functions for focusing time %0.2f...' % (tau[0])) X, sourcePoints = sampleSpace(receiverPoints, recordingTimes - tau[0], velocity, x, y, z, pulse) else: X, sourcePoints = sampleSpace(receiverPoints, recordingTimes, velocity, x, y, z, pulse) if z is None: np.savez('VZTestFuncs.npz', TFarray=X, time=recordingTimes, receivers=receiverPoints, peakFreq=peakFreq, peakTime=peakTime, velocity=velocity, x=x, y=y, tau=tau, samplingPoints=sourcePoints) else: np.savez('VZTestFuncs.npz', TFarray=X, time=recordingTimes, receivers=receiverPoints, peakFreq=peakFreq, peakTime=peakTime, velocity=velocity, x=x, y=y, z=z, tau=tau, samplingPoints=sourcePoints) #============================================================================== # compute spectra freqs, amplitudes = compute_spectrum(X, tstep * dt, args.power) if args.power: plotLabel = 'power' plotParams['freq_title'] = 'Mean Power Spectrum' plotParams['freq_ylabel'] = 'Power' else: plotLabel = 'amplitude' plotParams['freq_title'] = 'Mean Amplitude Spectrum' plotParams['freq_ylabel'] = 'Amplitude' if args.data or all(v is not True for v in [args.data, args.testfunc]): if noisy: plotParams[ 'freq_title'] += ' [Noisy ' + plotParams['data_title'] + ']' else: plotParams['freq_title'] += ' [' + plotParams['data_title'] + ']' elif args.testfunc: plotParams['freq_title'] += ' [' + plotParams['tf_title'] + 's]' if args.fmin is not None: if args.fmin >= 0: if args.fmax is not None: if args.fmax > args.fmin: plotParams['fmin'] = args.fmin plotParams['fmax'] = args.fmax else: sys.exit( textwrap.dedent(''' RelationError: The maximum frequency of the %s spectrum plot must be greater than the mininum frequency. ''' % (plotLabel))) else: fmax = plotParams['fmax'] if fmax > args.fmin: plotParams['fmin'] = args.fmin else: sys.exit( textwrap.dedent(''' RelationError: The specified minimum frequency of the %s spectrum plot must be less than the maximum frequency. ''' % (plotLabel))) else: sys.exit( textwrap.dedent(''' ValueError: The specified minimum frequency of the %s spectrum plot must be nonnegative. ''' % (plotLabel))) #=============================================================================== if args.fmax is not None: if args.fmin is not None: if args.fmin >= 0: if args.fmax > args.fmin: plotParams['fmin'] = args.fmin plotParams['fmax'] = args.fmax else: sys.exit( textwrap.dedent(''' RelationError: The maximum frequency of the %s spectrum plot must be greater than the mininum frequency. ''' % (plotLabel))) else: sys.exit( textwrap.dedent(''' ValueError: The specified minimum frequency of the %s spectrum plot must be nonnegative. ''' % (plotLabel))) else: fmin = plotParams['fmin'] if args.fmax > fmin: plotParams['fmax'] = args.fmax else: sys.exit( textwrap.dedent(''' RelationError: The specified maximum frequency of the %s spectrum plot must be greater than the minimum frequency. ''' % (plotLabel))) elif plotParams['fmax'] is None: plotParams['fmax'] = np.max(freqs) #=================================================================================== if args.fu is not None: plotParams['fu'] = args.fu if args.mode is not None: plotParams['view_mode'] = args.mode pickle.dump(plotParams, open('plotParams.pkl', 'wb'), pickle.HIGHEST_PROTOCOL) fig, ax = setFigure(num_axes=1, mode=plotParams['view_mode']) ax.plot(freqs, amplitudes, color=ax.linecolor, linewidth=ax.linewidth) ax.set_title(plotParams['freq_title'], color=ax.titlecolor) # get frequency units from plotParams fu = plotParams['fu'] fmin = plotParams['fmin'] fmax = plotParams['fmax'] if fu != '': ax.set_xlabel('Frequency (%s)' % (fu), color=ax.labelcolor) else: ax.set_xlabel('Frequency', color=ax.labelcolor) ax.set_ylabel(plotParams['freq_ylabel'], color=ax.labelcolor) ax.set_xlim([fmin, fmax]) ax.set_ylim(bottom=0) ax.fill_between(freqs, 0, amplitudes, where=(amplitudes > 0), color='m', alpha=ax.alpha) ax.locator_params(axis='y', nticks=6) ax.ticklabel_format(style='sci', axis='y', scilimits=(0, 0)) plt.tight_layout() fig.savefig(plotLabel + 'Spectrum.' + args.format, format=args.format, bbox_inches='tight', facecolor=fig.get_facecolor()) plt.show()
def cli(): parser = argparse.ArgumentParser() parser.add_argument( '--nfo', action='store_true', help='''Compute or plot the singular-value decomposition of the near-field operator (NFO).''') parser.add_argument( '--lso', action='store_true', help='''Compute or plot the singular-value decomposition of the Lippmann-Schwinger operator (LSO).''') parser.add_argument( '--numVals', '-k', type=int, help='''Specify the number of singular values/vectors to compute. Must a positive integer between 1 and the order of the square input matrix.''') parser.add_argument( '--domain', '-d', type=str, choices=['time', 'freq'], help='''Specify whether to compute the singular-value decomposition in the time domain or frequency domain. Default is set to frequency domain for faster, more accurate performance.''') parser.add_argument( '--plot', '-p', action='store_true', help='''Plot the computed singular values and vectors.''') parser.add_argument( '--format', '-f', type=str, default='pdf', choices=['png', 'pdf', 'ps', 'eps', 'svg'], help= '''Specify the image format of the saved file. Accepted formats are png, pdf, ps, eps, and svg. Default format is set to pdf.''') parser.add_argument( '--mode', type=str, choices=['light', 'dark'], required=False, help='''Specify whether to view plots in light mode for daytime viewing or dark mode for nighttime viewing. Mode must be either \'light\' or \'dark\'.''') args = parser.parse_args() if args.nfo and not args.lso: operatorType = 'near-field operator' inputType = 'data' try: SVD = np.load('NFO_SVD.npz') s = SVD['s'] Uh = SVD['Uh'] V = SVD['V'] domain = SVD['domain'] except FileNotFoundError: s, Uh, V, domain = None, None, None, 'freq' elif not args.nfo and args.lso: operatorType = 'Lippmann-Schwinger operator' inputType = 'test functions' try: SVD = np.load('LSO_SVD.npz') s = SVD['s'] Uh = SVD['Uh'] V = SVD['V'] domain = SVD['domain'] except FileNotFoundError: s, Uh, V, domain = None, None, None, 'freq' elif args.nfo and args.lso: sys.exit( textwrap.dedent(''' UsageError: Please specify only one of the arguments \'--nfo\' or \'--lso\'. ''')) else: sys.exit( textwrap.dedent(''' For which operator would you like to compute or plot a singular-value decomposition? Enter: vzsvd --nfo for the near-field operator or vzsvd --lso for the Lippmann-Schwinger operator. ''')) #============================================================================== # if an SVD already exists... if any(v is not None for v in [s, Uh, V]) and args.numVals is not None and args.plot is True: if args.numVals >= 1 and args.numVals == len(s): userResponded = False print( textwrap.dedent(''' A singular-value decomposition of the {s} for {n} values/vectors already exists. What would you like to do? Enter '1' to specify a new number of values/vectors to compute. (Default) Enter '2' to recompute a singular-value decomposition for {n} values/vectors. Enter 'q/quit' to exit. '''.format(s=operatorType, n=args.numVals))) while userResponded == False: answer = input('Action: ') if answer == '' or answer == '1': k = int( input( 'Please specify the number of singular values/vectors to compute: ' )) if isValid(k): print('Proceeding with numVals = %s...' % (k)) userResponded = True computeSVD = True break else: break elif answer == '2': k = args.numVals print( 'Recomputing SVD of the %s for %s singular values/vectors...' % (operatorType, k)) userResponded = True computeSVD = True elif answer == 'q' or answer == 'quit': sys.exit('Exiting program.\n') else: print( 'Invalid response. Please enter \'1\', \'2\', or \'q/quit\'.' ) elif args.numVals >= 1 and args.numVals != len(s): k = args.numVals computeSVD = True elif args.numVals < 1: userResponded = False print( textwrap.dedent(''' ValueError: Argument '-k/--numVals' must be a positive integer between 1 and the order of the square input matrix. The parameter will be set to the default value of 6. What would you like to do? Enter '1' to specify a value of the parameter. (Default) Enter '2' to proceed with the default value. Enter 'q/quit' exit the program. ''')) while userResponded == False: answer = input('Action: ') if answer == '' or answer == '1': k = int( input( 'Please specify the number of singular values/vectors to compute: ' )) if isValid(k): print('Proceeding with numVals = %s...' % (k)) userResponded = True computeSVD = True break else: break elif answer == '2': k = 6 print('Proceeding with the default value numVals = %s...' % (k)) computeSVD = True userResponded = True break elif answer == 'q' or answer == 'quit': sys.exit('Exiting program.\n') else: print( 'Invalid response. Please enter \'1\', \'2\', or \'q/quit\'.' ) elif all(v is not None for v in [s, Uh, V]) and args.numVals is None and args.plot is True: computeSVD = False elif all(v is not None for v in [s, Uh, V]) and args.numVals is not None and args.plot is False: if args.numVals >= 1 and args.numVals == len(s): userResponded = False print( textwrap.dedent(''' A singular-value decomposition of the {s} for {n} values/vectors already exists. What would you like to do? Enter '1' to specify a new number of values/vectors to compute. (Default) Enter '2' to recompute a singular-value decomposition for {n} values/vectors. Enter 'q/quit' to exit. '''.format(s=operatorType, n=args.numVals))) while userResponded == False: answer = input('Action: ') if answer == '' or answer == '1': k = int( input( 'Please specify the number of singular values/vectors to compute: ' )) if isValid(k): print('Proceeding with numVals = %s...' % (k)) userResponded = True computeSVD = True break else: break elif answer == '2': k = args.numVals print( 'Recomputing SVD of the %s for %s singular values/vectors...' % (operatorType, k)) userResponded = True computeSVD = True elif answer == 'q' or answer == 'quit': sys.exit('Exiting program.\n') else: print( 'Invalid response. Please enter \'1\', \'2\', or \'q/quit\'.' ) elif args.numVals >= 1 and args.numVals != len(s): k = args.numVals computeSVD = True elif args.numVals < 1: userResponded = False print( textwrap.dedent(''' ValueError: Argument '-k/--numVals' must be a positive integer between 1 and the order of the square input matrix. The parameter will be set to the default value of 6. What would you like to do? Enter '1' to specify a value of the parameter. (Default) Enter '2' to proceed with the default value. Enter 'q/quit' exit the program. ''')) while userResponded == False: answer = input('Action: ') if answer == '' or answer == '1': k = int( input( 'Please specify the number of singular values/vectors to compute: ' )) if isValid(k): print('Proceeding with numVals = %s...' % (k)) userResponded = True computeSVD = True break else: break elif answer == '2': k = 6 print('Proceeding with the default value numVals = %s...' % (k)) computeSVD = True userResponded = True break elif answer == 'q' or answer == 'quit': sys.exit('Exiting program.\n') else: print( 'Invalid response. Please enter \'1\', \'2\', or \'q/quit\'.' ) elif all(v is not None for v in [s, Uh, V]) and args.numVals is None and args.plot is False: sys.exit( textwrap.dedent(''' No action specified. A singular-value decomposition of the %s for %s values/vectors already exists. Please specify at least one of '-k/--numVals' or '-p/--plot' arguments with 'vzsvd' command. ''' % (operatorType, len(s)))) #============================================================================== # if an SVD does not already exist... elif any(v is None for v in [s, Uh, V]) and args.numVals is not None and args.plot is True: if args.numVals >= 1: computeSVD = True k = args.numVals elif args.numVals < 1: userResponded = False print( textwrap.dedent(''' ValueError: Argument '-k/--numVals' must be a positive integer between 1 and the order of the square input matrix. The parameter will be set to the default value of 6. What would you like to do? Enter '1' to specify a value of the parameter. (Default) Enter '2' to proceed with the default value. Enter 'q/quit' exit the program. ''')) while userResponded == False: answer = input('Action: ') if answer == '' or answer == '1': k = int( input( 'Please specify the number of singular values/vectors to compute: ' )) if isValid(k): print('Proceeding with numVals = %s...' % (k)) userResponded = True computeSVD = True break else: break elif answer == '2': k = 6 print('Proceeding with the default value numVals = %s...' % (k)) computeSVD = True userResponded = True break elif answer == 'q' or answer == 'quit': sys.exit('Exiting program.\n') else: print( 'Invalid response. Please enter \'1\', \'2\', or \'q/quit\'.' ) elif any(v is None for v in [s, Uh, V]) and args.numVals is None and args.plot is True: userResponded = False print( textwrap.dedent(''' PlotError: A singular-value decomposition of the {s} does not exist. A plot will be generated after a singular-value decomposition has been computed. Enter '1' to specify a number of singular values/vectors to compute. (Default) Enter 'q/quit' to exit. '''.format(s=operatorType))) while userResponded == False: answer = input('Action: ') if answer == '' or answer == '1': k = int( input( 'Please specify the number of singular values/vectors to compute: ' )) if isValid(k): print('Proceeding with numVals = %s...' % (k)) userResponded = True computeSVD = True break else: break elif answer == 'q' or answer == 'quit': sys.exit('Exiting program.\n') else: print('Invalid response. Please enter \'1\', or \'q/quit\'.') elif any(v is None for v in [s, Uh, V]) and args.numVals is not None and args.plot is False: if args.numVals >= 1: k = args.numVals computeSVD = True elif args.numVals < 1: userResponded = False print( textwrap.dedent(''' ValueError: Argument '-k/--numVals' must be a positive integer between 1 and the order of the square input matrix. The parameter will be set to the default value of 6. What would you like to do? Enter '1' to specify a value of the parameter. (Default) Enter '2' to proceed with the default value. Enter 'q/quit' exit the program. ''')) while userResponded == False: answer = input('Action: ') if answer == '' or answer == '1': k = int( input( 'Please specify the number of singular values/vectors to compute: ' )) if isValid(k): print('Proceeding with numVals = %s...' % (k)) userResponded = True computeSVD = True break else: break elif answer == '2': k = 6 print('Proceeding with the default value numVals = %s...' % (k)) computeSVD = True userResponded = True break elif answer == 'q' or answer == 'quit': sys.exit('Exiting program.\n') else: print( 'Invalid response. Please enter \'1\', \'2\', or \'q/quit\'.' ) elif any(v is None for v in [s, Uh, V]) and args.numVals is None and args.plot is False: sys.exit( textwrap.dedent(''' Nothing to be done. A singular-value decomposition of the {s} does not exist. Please specify at least one of '-k/--numVals' or '-p/--plot' arguments with 'vzsvd' command. '''.format(s=operatorType))) #============================================================================== # Read in data files datadir = np.load('datadir.npz') receiverPoints = np.load(str(datadir['receivers'])) recordingTimes = np.load(str(datadir['recordingTimes'])) dt = recordingTimes[1] - recordingTimes[0] if Path('window.npz').exists(): windowDict = np.load('window.npz') # Apply the receiver window rstart = windowDict['rstart'] rstop = windowDict['rstop'] rstep = windowDict['rstep'] # Apply the time window tstart = windowDict['tstart'] tstop = windowDict['tstop'] tstep = windowDict['tstep'] # Convert time window parameters to corresponding array indices Tstart = int(round(tstart / dt)) Tstop = int(round(tstop / dt)) else: rstart = 0 rstop = receiverPoints.shape[0] rstep = 1 tstart = recordingTimes[0] tstop = recordingTimes[-1] Tstart = 0 Tstop = len(recordingTimes) tstep = 1 # Apply the receiver window rinterval = np.arange(rstart, rstop, rstep) receiverPoints = receiverPoints[rinterval, :] # Apply the time window tinterval = np.arange(Tstart, Tstop, tstep) recordingTimes = recordingTimes[tinterval] # Used for getting time and frequency units if Path('plotParams.pkl').exists(): plotParams = pickle.load(open('plotParams.pkl', 'rb')) else: plotParams = default_params() if computeSVD: # get time units for printing time windows or time shifts tu = plotParams['tu'] if args.nfo: if Path('noisyData.npz').exists(): userResponded = False print( textwrap.dedent(''' Detected that band-limited noise has been added to the data array. Would you like to compute an SVD of the noisy data? ([y]/n) Enter 'q/quit' exit the program. ''')) while userResponded == False: answer = input('Action: ') if answer == '' or answer == 'y' or answer == 'yes': print( 'Proceeding with singular-value decomposition using noisy data...' ) # read in the noisy data array X = np.load('noisyData.npz')['noisyData'] userResponded = True elif answer == 'n' or answer == 'no': print( 'Proceeding with singular-value decomposition using noise-free data...' ) # read in the recorded data array X = np.load(str(datadir['recordedData'])) userResponded = True elif answer == 'q' or answer == 'quit': sys.exit('Exiting program.\n') else: print( 'Invalid response. Please enter \'y/yes\', \'n\no\', or \'q/quit\'.' ) else: # read in the recorded data array X = np.load(str(datadir['recordedData'])) if Path('window.npz').exists(): print('Detected user-specified window:\n') # For display/printing purposes, count receivers with one-based # indexing. This amounts to incrementing the rstart parameter by 1 print('window @ receivers : start =', rstart + 1) print('window @ receivers : stop =', rstop) print('window @ receivers : step =', rstep, '\n') if tu != '': print('window @ time : start = %0.2f %s' % (tstart, tu)) print('window @ time : stop = %0.2f %s' % (tstop, tu)) else: print('window @ time : start =', tstart) print('window @ time : stop =', tstop) print('window @ time : step =', tstep, '\n') # Apply the source window slabel = windowDict['slabel'] sstart = windowDict['sstart'] sstop = windowDict['sstop'] sstep = windowDict['sstep'] sinterval = np.arange(sstart, sstop, sstep) # For display/printing purposes, count recordings/sources with one-based # indexing. This amounts to incrementing the sstart parameter by 1 print('window @ %s : start = %s' % (slabel, sstart + 1)) print('window @ %s : stop = %s' % (slabel, sstop)) print('window @ %s : step = %s\n' % (slabel, sstep)) print('Applying window to data volume...') X = X[rinterval, :, :] X = X[:, tinterval, :] X = X[:, :, sinterval] Nr, Nt, Ns = X.shape # Apply tapered cosine (Tukey) window to time signals. # This ensures the fast fourier transform (FFT) used in # the definition of the matrix-vector product below is # acting on a function that is continuous at its edges. peakFreq = pulseFun.peakFreq # Np : Number of samples in the dominant period T = 1 / peakFreq Np = int(round(1 / (tstep * dt * peakFreq))) # alpha is set to taper over 6 of the dominant period of the # pulse function (3 periods from each end of the signal) alpha = 6 * Np / Nt print('Tapering time signals with Tukey window: %d' % (int(round(alpha * 100))) + '%') TukeyWindow = tukey(Nt, alpha) X *= TukeyWindow[None, :, None] else: Nr, Nt, Ns = X.shape elif args.lso: if Path('samplingGrid.npz').exists(): samplingGrid = np.load('samplingGrid.npz') x = samplingGrid['x'] y = samplingGrid['y'] tau = samplingGrid['tau'] if 'z' in samplingGrid: z = samplingGrid['z'] else: z = None else: sys.exit( textwrap.dedent(''' A sampling grid needs to be set up before computing a singular-value decomposition of the %s. Enter: vzgrid --help from the command-line for more information on how to set up a sampling grid. ''' % (operatorType))) pulse = lambda t: pulseFun.pulse(t) velocity = pulseFun.velocity peakFreq = pulseFun.peakFreq peakTime = pulseFun.peakTime if Path('VZTestFuncs.npz').exists(): print( '\nDetected that free-space test functions have already been computed...' ) print( 'Checking consistency with current space-time sampling grid...' ) TFDict = np.load('VZTestFuncs.npz') if samplingIsCurrent(TFDict, receiverPoints, recordingTimes, velocity, tau, x, y, z, peakFreq, peakTime): X = TFDict['TFarray'] sourcePoints = TFDict['samplingPoints'] print('Moving forward to SVD...') else: print('Recomputing test functions...') # set up the convolution times based on length of recording time interval T = recordingTimes[-1] - recordingTimes[0] convolutionTimes = np.linspace(-T, T, 2 * len(recordingTimes) - 1) if tau[0] != 0: if tu != '': print( 'Recomputing test functions for focusing time %0.2f %s...' % (tau[0], tu)) else: print( 'Recomputing test functions for focusing time %0.2f...' % (tau[0])) X, sourcePoints = sampleSpace( receiverPoints, convolutionTimes - tau[0], velocity, x, y, z, pulse) else: X, sourcePoints = sampleSpace(receiverPoints, convolutionTimes, velocity, x, y, z, pulse) if z is None: np.savez('VZTestFuncs.npz', TFarray=X, time=recordingTimes, receivers=receiverPoints, peakFreq=peakFreq, peakTime=peakTime, velocity=velocity, x=x, y=y, tau=tau, samplingPoints=sourcePoints) else: np.savez('VZTestFuncs.npz', TFarray=X, time=recordingTimes, receivers=receiverPoints, peakFreq=peakFreq, peakTime=peakTime, velocity=velocity, x=x, y=y, z=z, tau=tau, samplingPoints=sourcePoints) else: print( '\nComputing free-space test functions for the current space-time sampling grid...' ) if tau[0] != 0: if tu != '': print( 'Computing test functions for focusing time %0.2f %s...' % (tau[0], tu)) else: print( 'Computing test functions for focusing time %0.2f...' % (tau[0])) X, sourcePoints = sampleSpace(receiverPoints, recordingTimes - tau[0], velocity, x, y, z, pulse) else: X, sourcePoints = sampleSpace(receiverPoints, recordingTimes, velocity, x, y, z, pulse) if z is None: np.savez('VZTestFuncs.npz', TFarray=X, time=recordingTimes, receivers=receiverPoints, peakFreq=peakFreq, peakTime=peakTime, velocity=velocity, x=x, y=y, tau=tau, samplingPoints=sourcePoints) else: np.savez('VZTestFuncs.npz', TFarray=X, time=recordingTimes, receivers=receiverPoints, peakFreq=peakFreq, peakTime=peakTime, velocity=velocity, x=x, y=y, z=z, tau=tau, samplingPoints=sourcePoints) Nr, Nt, Ns = X.shape #============================================================================== if args.domain is not None: domain = args.domain if domain == 'freq': # Transform convolutional operator into frequency domain and bandpass for efficient SVD print('Transforming %s to the frequency domain...' % (inputType)) N = nextPow2(2 * Nt) X = np.fft.rfft(X, n=N, axis=1) if plotParams['fmax'] is None: freqs = np.fft.rfftfreq(N, tstep * dt) plotParams['fmax'] = np.max(freqs) # Apply the frequency window fmin = plotParams['fmin'] fmax = plotParams['fmax'] fu = plotParams['fu'] # frequency units (e.g., Hz) if fu != '': print('Applying bandpass filter: [%0.2f %s, %0.2f %s]' % (fmin, fu, fmax, fu)) else: print('Applying bandpass filter: [%0.2f, %0.2f]' % (fmin, fmax)) df = 1.0 / (N * tstep * dt) startIndex = int(round(fmin / df)) stopIndex = int(round(fmax / df)) finterval = np.arange(startIndex, stopIndex, 1) X = X[:, finterval, :] #============================================================================== # Compute the k largest singular values (which='LM') of the operator A # Singular values are elements of the vector 's' # Left singular vectors are columns of 'U' # Right singular vectors are columns of 'V' A = asConvolutionalOperator(X) if k == 1: print('Computing SVD of the %s for 1 singular value/vector...' % (operatorType)) else: print('Computing SVD of the %s for %s singular values/vectors...' % (operatorType, k)) startTime = time.time() U, s, Vh = svds(A, k, which='LM') endTime = time.time() print('Elapsed time:', humanReadable(endTime - startTime), '\n') # sort the singular values and corresponding vectors in descending order # (i.e., largest to smallest) index = s.argsort()[::-1] s = s[index] Uh = U[:, index].conj().T V = Vh[index, :].conj().T # Write binary output with numpy if args.nfo: np.savez('NFO_SVD.npz', s=s, Uh=Uh, V=V, domain=domain) elif args.lso: np.savez('LSO_SVD.npz', s=s, Uh=Uh, V=V, domain=domain) #============================================================================== if args.plot and all(v is not None for v in [s, Uh, V]): Nr = receiverPoints.shape[0] Nt = len(recordingTimes) try: k except NameError: k = len(s) if args.domain is not None and domain != args.domain: if domain == 'freq': s1 = 'time' s2 = 'frequency' else: s1 = 'frequency' s2 = 'time' sys.exit( textwrap.dedent(''' Error: Attempted to plot the singular-value decomposition in the %s domain, but the decomposition was computed in the %s domain. ''' % (s1, s2))) if domain == 'freq': # plot singular vectors in frequency domain N = nextPow2(2 * Nt) freqs = np.fft.rfftfreq(N, tstep * dt) if plotParams['fmax'] is None: plotParams['fmax'] = np.max(freqs) # Apply the frequency window fmin = plotParams['fmin'] fmax = plotParams['fmax'] df = 1.0 / (N * tstep * dt) startIndex = int(round(fmin / df)) stopIndex = int(round(fmax / df)) finterval = np.arange(startIndex, stopIndex, 1) freqs = freqs[finterval] fmax = freqs[-1] M = len(freqs) Ns = int(V.shape[0] / M) U = np.reshape(Uh.conj().T, (Nr, M, k)) V = np.reshape(V, (Ns, M, k)) else: # domain == 'time' M = 2 * Nt - 1 Ns = int(V.shape[0] / M) U = np.reshape(Uh.T, (Nr, M, k)) V = np.reshape(V, (Ns, M, k)) T = recordingTimes[-1] - recordingTimes[0] times = np.linspace(-T, T, M) if args.nfo: # Near-field operator try: sinterval except NameError: if Path('window.npz').exists(): sstart = windowDict['sstart'] sstop = windowDict['sstop'] sstep = windowDict['sstep'] else: sstart = 0 sstop = Ns sstep = 1 sinterval = np.arange(sstart, sstop, sstep) if 'sources' in datadir: sourcePoints = np.load(str(datadir['sources'])) sourcePoints = sourcePoints[sinterval, :] else: sourcePoints = None else: # if args.lso (Lippmann-Schwinger operator) # in the case of the Lippmann-Schwinger operator, 'sourcePoints' # correspond to sampling points, which should always exist. try: sourcePoints except NameError: if Path('VZTestFuncs.npz').exists(): TFDict = np.load('VZTestFuncs.npz') sourcePoints = TFDict['samplingPoints'] else: sys.exit( textwrap.dedent(''' Error: A sampling grid must exist and test functions computed before a singular-value decomposition of the Lippmann-Schwinger operator can be computed or plotted. ''')) sstart = 0 sstop = sourcePoints.shape[0] sstep = 1 sinterval = np.arange(sstart, sstop, sstep) # increment source/recording interval and receiver interval to be consistent # with one-based indexing (i.e., count from one instead of zero) sinterval += 1 rinterval += 1 rstart += 1 sstart += 1 if args.mode is not None: plotParams['view_mode'] = args.mode pickle.dump(plotParams, open('plotParams.pkl', 'wb'), pickle.HIGHEST_PROTOCOL) remove_keymap_conflicts({'left', 'right', 'up', 'down', 'save'}) if domain == 'freq': # plot the left singular vectors fig_lvec, ax_lvec_r, ax_lvec_i = setFigure( num_axes=2, mode=plotParams['view_mode']) ax_lvec_r.volume = U.real ax_lvec_i.volume = U.imag ax_lvec_r.index = 0 ax_lvec_i.index = 0 fig_lvec.suptitle('Left-Singular Vector', color=ax_lvec_r.titlecolor, fontsize=16) fig_lvec.subplots_adjust(bottom=0.27, top=0.86) leftTitle_r = vector_title('left', ax_lvec_r.index + 1, 'real') leftTitle_i = vector_title('left', ax_lvec_i.index + 1, 'imag') for ax, title in zip([ax_lvec_r, ax_lvec_i], [leftTitle_r, leftTitle_i]): left_im = plotFreqVectors(ax, ax.volume[:, :, ax.index], freqs, fmin, fmax, rstart, rinterval, receiverPoints, title, 'left', plotParams) lp0 = ax_lvec_r.get_position().get_points().flatten() lp1 = ax_lvec_i.get_position().get_points().flatten() left_cax = fig_lvec.add_axes([lp0[0], 0.12, lp1[2] - lp0[0], 0.03]) lcbar = fig_lvec.colorbar(left_im, left_cax, orientation='horizontal') lcbar.outline.set_edgecolor(ax_lvec_r.cbaredgecolor) lcbar.ax.tick_params(axis='x', colors=ax_lvec_r.labelcolor) lcbar.ax.yaxis.set_major_formatter(FormatStrFormatter('%.1f')) lcbar.set_label('Amplitude', labelpad=5, rotation=0, fontsize=12, color=ax_lvec_r.labelcolor) fig_lvec.canvas.mpl_connect( 'key_press_event', lambda event: process_key_vectors( event, freqs, fmin, fmax, rstart, sstart, rinterval, sinterval, receiverPoints, sourcePoints, plotParams, 'cmplx_left')) # plot the right singular vectors fig_rvec, ax_rvec_r, ax_rvec_i = setFigure( num_axes=2, mode=plotParams['view_mode']) ax_rvec_r.volume = V.real ax_rvec_i.volume = V.imag ax_rvec_r.index = 0 ax_rvec_i.index = 0 fig_rvec.suptitle('Right-Singular Vector', color=ax_rvec_r.titlecolor, fontsize=16) fig_rvec.subplots_adjust(bottom=0.27, top=0.86) rightTitle_r = vector_title('right', ax_rvec_r.index + 1, 'real') rightTitle_i = vector_title('right', ax_rvec_i.index + 1, 'imag') for ax, title in zip([ax_rvec_r, ax_rvec_i], [rightTitle_r, rightTitle_i]): right_im = plotFreqVectors(ax, ax.volume[:, :, ax.index], freqs, fmin, fmax, sstart, sinterval, sourcePoints, title, 'right', plotParams) rp0 = ax_rvec_r.get_position().get_points().flatten() rp1 = ax_rvec_i.get_position().get_points().flatten() right_cax = fig_rvec.add_axes( [rp0[0], 0.12, rp1[2] - rp0[0], 0.03]) rcbar = fig_rvec.colorbar(right_im, right_cax, orientation='horizontal') rcbar.outline.set_edgecolor(ax_rvec_r.cbaredgecolor) rcbar.ax.tick_params(axis='x', colors=ax_rvec_r.labelcolor) rcbar.ax.yaxis.set_major_formatter(FormatStrFormatter('%.1f')) rcbar.set_label('Amplitude', labelpad=5, rotation=0, fontsize=12, color=ax_lvec_r.labelcolor) fig_rvec.canvas.mpl_connect( 'key_press_event', lambda event: process_key_vectors( event, freqs, fmin, fmax, rstart, sstart, rinterval, sinterval, receiverPoints, sourcePoints, plotParams, 'cmplx_right')) else: # domain == 'time' fig_vec, ax_lvec, ax_rvec = setFigure(num_axes=2, mode=plotParams['view_mode']) ax_lvec.volume = U ax_lvec.index = 0 leftTitle = vector_title('left', ax_lvec.index + 1) plotWiggles(ax_lvec, ax_lvec.volume[:, :, ax_lvec.index], times, -T, T, rstart, rinterval, receiverPoints, leftTitle, 'left', plotParams) ax_rvec.volume = V ax_rvec.index = 0 rightTitle = vector_title('right', ax_rvec.index + 1) plotWiggles(ax_rvec, ax_rvec.volume[:, :, ax_rvec.index], times, -T, T, sstart, sinterval, sourcePoints, rightTitle, 'right', plotParams) fig_vec.tight_layout() fig_vec.canvas.mpl_connect( 'key_press_event', lambda event: process_key_vectors( event, times, -T, T, rstart, sstart, rinterval, sinterval, receiverPoints, sourcePoints, plotParams)) #============================================================================== # plot the singular values # figure and axis for singular values fig_vals, ax_vals = setFigure(num_axes=1, mode=plotParams['view_mode']) n = np.arange(1, k + 1, 1) kappa = s[0] / s[-1] # condition number = max(s) / min(s) ax_vals.plot(n, s, '.', clip_on=False, markersize=9, label=r'Condition Number: %0.1e' % (kappa), color=ax_vals.pointcolor) ax_vals.set_xlabel('n', color=ax_vals.labelcolor) ax_vals.set_ylabel('$\sigma_n$', color=ax_vals.labelcolor) legend = ax_vals.legend(title='Singular Values', loc='upper center', bbox_to_anchor=(0.5, 1.25), markerscale=0, handlelength=0, handletextpad=0, fancybox=True, shadow=True, fontsize='large') legend.get_title().set_fontsize('large') ax_vals.set_xlim([1, k]) ax_vals.set_ylim(bottom=0) ax_vals.locator_params(axis='y', nticks=6) ax_vals.ticklabel_format(style='sci', axis='y', scilimits=(0, 0)) fig_vals.tight_layout() fig_vals.savefig('singularValues.' + args.format, format=args.format, bbox_inches='tight', facecolor=fig_vals.get_facecolor()) plt.show()
def cli(): parser = argparse.ArgumentParser() parser.add_argument('--data', action='store_true', help='Plot the frequency spectra of the recorded data. (Default)') parser.add_argument('--impulse', action='store_true', help='Plot the frequency spectra of the simulated impulse responses.') parser.add_argument('--scaling', '-s', type=str, default='amp', choices=['amp', 'pow', 'psd'], help='''Specify the scaling of the spectrum. Choose from amplitude ('amp'), power ('pow'), or power spectral density ('psd') using Welch's method. Default is set to 'amp'.''') parser.add_argument('--nseg', type=int, help='''Specify the approximate number of segments into which the time signal will be partitioned. Only used if scaling is set to 'psd'. Increasing the number of segments increases computational cost and the accuracy of the PSD estimate, but decreases frequency resolution. Default is set to 20.''') parser.add_argument('--fmin', type=float, help='Specify the minimum frequency of the amplitude/power spectrum plot. Default is set to 0.') parser.add_argument('--fmax', type=float, help='''Specify the maximum frequency of the amplitude/power spectrum plot. Default is set to the maximum frequency bin based on the length of the time signal.''') parser.add_argument('--au', type=str, help='Specify the amplitude units (e.g., Pa)') parser.add_argument('--fu', type=str, help='Specify the frequency units (e.g., Hz)') parser.add_argument('--format', '-f', type=str, default='pdf', choices=['png', 'pdf', 'ps', 'eps', 'svg'], help='''specify the image format of the saved file. Accepted formats are png, pdf, ps, eps, and svg. Default format is set to pdf.''') parser.add_argument('--mode', type=str, choices=['light', 'dark'], required=False, help='''Specify whether to view plots in light mode for daytime viewing or dark mode for nighttime viewing. Mode must be either \'light\' or \'dark\'.''') args = parser.parse_args() #============================================================================== # Get time window parameters tinterval, tstep, dt = get_user_windows()[1:4] datadir = np.load('datadir.npz') recordingTimes = np.load(str(datadir['recordingTimes'])) recordingTimes = recordingTimes[tinterval] # Used for getting time and frequency units if Path('plotParams.pkl').exists(): plotParams = pickle.load(open('plotParams.pkl', 'rb')) else: plotParams = default_params() if all(v is True for v in [args.data, args.impulse]): X = load_data(domain='time', verbose=True) Xlabel = plotParams['data_title'] Xcolor = 'm' if 'testFuncs' not in datadir and not Path('VZImpulseResponses.npz').exists(): X2 = load_impulse_responses(domain='time', medium='constant', verbose=True) X2label = plotParams['impulse_title'] X2color = 'c' elif 'testFuncs' in datadir and not Path('VZImpulseResponses.npz').exists(): X2 = load_impulse_responses(domain='time', medium='variable', verbose=True) X2label = plotParams['impulse_title'] X2color = 'c' elif not 'testFuncs' in datadir and Path('VZImpulseResponses.npz').exists(): X2 = load_impulse_responses(domain='time', medium='constant', verbose=True) X2label = plotParams['impulse_title'] X2color = 'c' elif 'testFuncs' in datadir and Path('VZImpulseResponses.npz').exists(): userResponded = False print(textwrap.dedent( ''' Two files are available containing simulated impulse responses. Enter '1' to view the user-provided impulse responses. (Default) Enter '2' to view the impulse responses computed by Vezda. Enter 'q/quit' to exit. ''')) while userResponded == False: answer = input('Action: ') if answer == '' or answer == '1': X2 = load_impulse_responses(domain='time', medium='variable', verbose=True) X2label = plotParams['impulse_title'] X2color = 'c' userResponded = True break elif answer == '2': X2 = load_impulse_responses(domain='time', medium='constant', verbose=True) X2label = plotParams['impulse_title'] X2color = 'c' userResponded = True break elif answer == 'q' or answer == 'quit': sys.exit('Exiting program.') else: print('Invalid response. Please enter \'1\', \'2\', or \'q/quit\'.') elif (args.data and not args.impulse) or all(v is not True for v in [args.data, args.impulse]): # default is to plot spectra of data if user does not specify either args.data or args.impulse X = load_data(domain='time', verbose=True) Xlabel = plotParams['data_title'] Xcolor = 'm' X2 = None elif not args.data and args.impulse: if 'testFuncs' not in datadir and not Path('VZImpulseResponses.npz').exists(): X = load_impulse_responses(domain='time', medium='constant', verbose=True) Xlabel = plotParams['impulse_title'] Xcolor = 'c' elif 'testFuncs' in datadir and not Path('VZImpulseResponses.npz').exists(): X = load_impulse_responses(domain='time', medium='variable', verbose=True) Xlabel = plotParams['impulse_title'] Xcolor = 'c' elif not 'testFuncs' in datadir and Path('VZImpulseResponses.npz').exists(): X = load_impulse_responses(domain='time', medium='constant', verbose=True) Xlabel = plotParams['impulse_title'] Xcolor = 'c' elif 'testFuncs' in datadir and Path('VZImpulseResponses.npz').exists(): userResponded = False print(textwrap.dedent( ''' Two files are available containing simulated impulse responses. Enter '1' to view the user-provided impulse responses. (Default) Enter '2' to view the impulse responses computed by Vezda. Enter 'q/quit' to exit. ''')) while userResponded == False: answer = input('Action: ') if answer == '' or answer == '1': X = load_impulse_responses(domain='time', medium='variable', verbose=True) Xlabel = plotParams['impulse_title'] Xcolor = 'c' userResponded = True break elif answer == '2': X = load_impulse_responses(domain='time', medium='constant', verbose=True) Xlabel = plotParams['impulse_title'] Xcolor = 'c' userResponded = True break elif answer == 'q' or answer == 'quit': sys.exit('Exiting program.') else: print('Invalid response. Please enter \'1\', \'2\', or \'q/quit\'.') X2 = None #============================================================================== # compute spectra if args.nseg is not None: if args.nseg >= 1: nseg = args.nseg else: sys.exit(textwrap.dedent( ''' Error: Optional argument '--nseg' must be greater than or equal to one. ''')) else: # if args.nseg is None nseg = 1 freqs, A = compute_spectra(X, tstep * dt, scaling=args.scaling, nseg=nseg) if X2 is not None: Nt = X.shape[1] X2 = X2[:, -Nt:, :] freqs2, A2 = compute_spectra(X2, tstep * dt, scaling=args.scaling, nseg=nseg) else: freqs2 = None A2 = None if args.au is not None: plotParams['au'] = args.au if args.fu is not None: plotParams['fu'] = args.fu au = plotParams['au'] fu = plotParams['fu'] if args.scaling == 'amp': plotLabel = 'amplitude' plotParams['freq_title'] = 'Mean Amplitude Spectrum' if au != '': plotParams['freq_ylabel'] = 'Amplitude (%s)' %(au) else: plotParams['freq_ylabel'] = 'Amplitude' elif args.scaling == 'pow': plotLabel = 'power' plotParams['freq_title'] = 'Mean Power Spectrum' if au != '': plotParams['freq_ylabel'] = 'Power (%s)' %(au + '$^2$') else: plotParams['freq_ylabel'] = 'Power' elif args.scaling == 'psd': plotLabel = 'psd' plotParams['freq_title'] = 'Mean Power Spectral Density' if au != '' and fu != '': plotParams['freq_ylabel'] = 'Power/Frequency (%s)' %(au + '$^2/$' + fu) else: plotParams['freq_ylabel'] = 'Power/Frequency' if args.fmin is not None: if args.fmin >= 0: if args.fmax is not None: if args.fmax > args.fmin: plotParams['fmin'] = args.fmin plotParams['fmax'] = args.fmax else: sys.exit(textwrap.dedent( ''' RelationError: The maximum frequency of the %s spectrum plot must be greater than the mininum frequency. ''' %(plotLabel))) else: fmax = plotParams['fmax'] if fmax > args.fmin: plotParams['fmin'] = args.fmin else: sys.exit(textwrap.dedent( ''' RelationError: The specified minimum frequency of the %s spectrum plot must be less than the maximum frequency. ''' %(plotLabel))) else: sys.exit(textwrap.dedent( ''' ValueError: The specified minimum frequency of the %s spectrum plot must be nonnegative. ''' %(plotLabel))) #=============================================================================== if args.fmax is not None: if args.fmin is not None: if args.fmin >= 0: if args.fmax > args.fmin: plotParams['fmin'] = args.fmin plotParams['fmax'] = args.fmax else: sys.exit(textwrap.dedent( ''' RelationError: The maximum frequency of the %s spectrum plot must be greater than the mininum frequency. ''' %(plotLabel))) else: sys.exit(textwrap.dedent( ''' ValueError: The specified minimum frequency of the %s spectrum plot must be nonnegative. ''' %(plotLabel))) else: fmin = plotParams['fmin'] if args.fmax > fmin: plotParams['fmax'] = args.fmax else: sys.exit(textwrap.dedent( ''' RelationError: The specified maximum frequency of the %s spectrum plot must be greater than the minimum frequency. ''' %(plotLabel))) elif plotParams['fmax'] is None: plotParams['fmax'] = np.max(freqs) #=================================================================================== if args.mode is not None: plotParams['view_mode'] = args.mode pickle.dump(plotParams, open('plotParams.pkl', 'wb'), pickle.HIGHEST_PROTOCOL) fig, ax = setFigure(num_axes=1, mode=plotParams['view_mode']) if args.scaling == 'psd': plotscale = 'log' else: plotscale = 'linear' gradient_fill(freqs, A, fill_color=Xcolor, ax=ax, scale=plotscale, zorder=2) handles, labels = [], [] handles.append(Line2D([0], [0], color=Xcolor, lw=4)) labels.append(Xlabel) if all(v is not None for v in [freqs2, A2]): gradient_fill(freqs2, A2, fill_color=X2color, ax=ax, scale=plotscale, zorder=1) handles.append(Line2D([0], [0], color=X2color, lw=4)) labels.append(X2label) ax.legend(handles, labels, fancybox=True, framealpha=1, shadow=True, loc='upper right') ax.set_title(plotParams['freq_title'], color=ax.titlecolor) fmin = plotParams['fmin'] fmax = plotParams['fmax'] if fu != '': ax.set_xlabel('Frequency (%s)' %(fu), color=ax.labelcolor) else: ax.set_xlabel('Frequency', color=ax.labelcolor) ax.set_ylabel(plotParams['freq_ylabel'], color=ax.labelcolor) ax.set_xlim([fmin, fmax]) if args.scaling != 'psd': ax.set_ylim(bottom=0) ax.ticklabel_format(style='sci', axis='y', scilimits=(0,0)) plt.tight_layout() fig.savefig(plotLabel + 'Spectrum.' + args.format, format=args.format, bbox_inches='tight', facecolor=fig.get_facecolor()) plt.show()