コード例 #1
0
def Face(train=False):
    base_model = VGGFace(input_shape=(200, 200, 3),
                         include_top=False,
                         model='resnet50',
                         weights=None,
                         pooling='avg')

    # load pre-trained weights if used for fine-tuning
    if train:
        base_model.load_weights(BASE_WEIGHTS_PATH)
        for layer in base_model.layers[:len(base_model.layers) - 50]:
            layer.trainable = False

    base_output = base_model.output
    # age 1~93, treat age as classifications task
    output_a = Dense(93, activation='softmax',
                     name='predications_age')(base_output)
    # gender 0 or 1
    output_g = Dense(2, activation='softmax',
                     name='predications_gender')(base_output)
    # race 0~4
    output_r = Dense(5, activation='softmax',
                     name='predications_race')(base_output)

    new_model = Model(inputs=base_model.input,
                      outputs=[output_a, output_g, output_r],
                      name='network_based_vggface')

    return new_model
コード例 #2
0
def id_loss(images, renders, vggpath):
    model = VGGFace(vggpath, False)

    inputs = tf.concat([images, renders], axis=0)
    layers, _, _ = model.encoder(inputs, False)
    z = layers['fc7']

    z_images, z_renders = tf.split(z, 2, axis=0)
    loss = tf.reduce_mean(tf.square(z_images - z_renders), name='id_loss')
    return loss
コード例 #3
0
def get_embeddings(filenames):
    # extract faces
    faces = [extract_face(f) for f in filenames]
    # convert into an array of samples
    samples = np.asarray(faces, 'float32')
    # prepare the face for the model, e.g. center pixels
    samples = preprocess_input(samples, version=2)

    model = VGGFace(model='resnet50',
                    include_top=False,
                    input_shape=(224, 224, 3),
                    pooling='avg')
    pred = model.predict(samples)
    return pred
コード例 #4
0
class CoarseModel(object):

    def __init__(self, vggpath='', basis3dmm=None, trainable=True):
        self.basis3dmm = basis3dmm
        self.model = VGGFace(vggpath, trainable)

    def encoder3DMM(self, imgs, reuse=False):

        with tf.variable_scope('CoarseModel', reuse=tf.AUTO_REUSE):
            layers, _, _ = self.model.encoder(imgs, reuse)

            z = tf.reshape(layers['fc7'], [-1, 4096])

            with tf.variable_scope('decoder', reuse=tf.AUTO_REUSE) as scope:

                para_shape = tf.layers.dense(z,
                    self.basis3dmm['bases_shape'].shape[0],
                    use_bias=False,
                    kernel_initializer=tf.truncated_normal_initializer(stddev=0.002),
                    name='para_shape')

                para_exp = tf.layers.dense(z,
                    self.basis3dmm['bases_exp'].shape[0],
                    use_bias=False,
                    kernel_initializer=tf.zeros_initializer(),
                    name='para_exp')

                para_tex = tf.layers.dense(z,
                    self.basis3dmm['bases_tex'].shape[0],
                    use_bias=False,
                    kernel_initializer=tf.truncated_normal_initializer(stddev=0.002),
                    name='para_tex')

                para_pose  = tf.layers.dense(z,
                    6,
                    use_bias=False,
                    kernel_initializer=tf.zeros_initializer(),
                    name='para_pose')

                para_illum = tf.layers.dense(z,
                    27,
                    use_bias=False,
                    kernel_initializer=tf.zeros_initializer(),
                    name='para_illum')

            return para_shape, para_exp, para_tex, para_pose, para_illum
コード例 #5
0
def extract_features(arguments, dataset_list):
    PATH = str(arguments.path)
    DATASET = str(arguments.file)
    DESCRIPTOR = str(arguments.desc)
    IMG_WIDTH = int(arguments.width)
    IMG_HEIGHT = int(arguments.height)
    KNOWN_SET_SIZE = float(arguments.known_set_size)
    TRAIN_SET_SIZE = float(arguments.train_set_size)

    matrix_x = []
    matrix_y = []
    matrix_z = []

    vgg_model = None
    if DESCRIPTOR == 'df':
        from vggface import VGGFace
        vgg_model = VGGFace()

    counterA = 0
    for sample in dataset_list:
        sample_path = sample[0]
        sample_name = sample[1]

        subject_path = PATH + sample_path
        subject_image = cv.imread(subject_path, cv.IMREAD_COLOR)

        if DESCRIPTOR == 'hog':
            subject_image = cv.resize(subject_image, (IMG_HEIGHT, IMG_WIDTH))
            feature_vector = Descriptor.get_hog(subject_image)
        elif DESCRIPTOR == 'df':
            feature_vector = Descriptor.get_deep_feature(subject_image,
                                                         vgg_model,
                                                         layer_name='fc6')

        matrix_x.append(feature_vector)
        matrix_y.append(sample_name)
        matrix_z.append(sample_path)

        counterA += 1
        print(counterA, sample_path, sample_name)

    return matrix_z, matrix_y, matrix_x
コード例 #6
0
def extract_features(arguments, dataset_list):
    PATH = str(arguments.path)
    DATASET = str(arguments.file)
    DESCRIPTOR = str(arguments.desc)
    IMG_WIDTH = int(arguments.width)
    IMG_HEIGHT = int(arguments.height)

    matrix_x = []
    matrix_y = []
    matrix_z = []

    vgg_model = None
    if DESCRIPTOR == 'df':
        from vggface import VGGFace
        vgg_model = VGGFace()

    counterA = 0
    for sample in dataset_list:
        try:
            sample_path = sample[0]
            sample_name = sample[1]
            subject_path = PATH + sample_path
            subject_image = cv.imread(subject_path, cv.IMREAD_COLOR)

            if DESCRIPTOR == 'hog':
                subject_image = cv.resize(subject_image, (IMG_HEIGHT, IMG_WIDTH))
                feature_vector = Descriptor.get_hog(subject_image)
            elif DESCRIPTOR == 'df':
                feature_vector = Descriptor.get_deep_feature(subject_image, vgg_model, layer_name='fc6')

            matrix_x.append(feature_vector)
            matrix_y.append(sample_name)
            matrix_z.append(sample_path)
            
            print(counterA, sample_path, sample_name, len(feature_vector))

        except Exception, e:
            print(counterA, sample_path + ' not loaded', str(e))
        counterA += 1
コード例 #7
0
def model_fn(lam, dropout):
    """Create a Keras Sequential model with layers."""
    input_tensor = Input(shape=(img_rows, img_cols, 3))
    vggface16 =VGGFace(include_top=True, model='vgg16',weights='vggface',
                  input_tensor=input_tensor)
    vggface16.layers.pop()
    vggface16.layers.pop()
    #vgg16.outputs = [vgg16.layers[-1].output]
    #vgg16.layers[-1].outbound_nodes = []
    # 最後のconv層の直前までの層をfreeze
    #vgg16.output_shape = vgg16.layers[-1].output_shape
    #top_model = Flatten()(vgg16.output)
    #top_model = Dense(1024, activation='relu', name='last_2', kernel_initializer=he_normal(seed))(top_model)
#     top_model.add(
    print(vggface16.layers[-1].output)
    top_model = Dropout(dropout)(vggface16.layers[-1].output)
    top_model = Dense(101, activation='softmax',
                      kernel_initializer=glorot_normal(seed), name='last')(top_model)
    model = Model(inputs=vggface16.input, outputs=top_model)
    #for layer in model.layers[:18]:
    #     layer.trainable = False

    #compile_model(model, learning_rate)
    return model
コード例 #8
0
ファイル: finetune.py プロジェクト: kbehouse/vgg-face-keras
def train_face_model(finetune=True):
    #===============custom parameters =============== #

    hidden_dim = 512

    img_width, img_height = 224, 224

    nb_class = 16
    One_Class_Train_MAX = 30
    One_Class_Valid_MAX = 10
    nb_train_samples = nb_class * One_Class_Train_MAX
    nb_validation_samples = nb_class * One_Class_Valid_MAX
    nb_epoch = 10
    batch_size = 16
    train_data_dir = 'data/train'
    validation_data_dir = 'data/validation'

    save_model_path = './faceDB/face-model.json'
    save_model_h5 = './faceDB/face-model.h5'
    save_face_index = './faceDB/face-index.json'

    # =============== NN =============== #
    vgg_model = VGGFace(include_top=False, input_shape=(224, 224, 3))

    # print('----------------After Add finetune layers----------------')
    # for l in vgg_model.layers:
    #     print('Name ', l.name, 'trainable' ,l.trainable)

    last_layer = vgg_model.get_layer('pool5').output
    x = Flatten(name='flatten')(last_layer)
    x = Dense(hidden_dim, activation='relu', name='fc6')(x)
    x = Dense(hidden_dim, activation='relu', name='fc7')(x)
    out = Dense(nb_class, activation='softmax', name='fc8')(x)
    custom_vgg_model = Model(vgg_model.input, out)

    if finetune:
        # print('----------------After Disable Trainable----------------')
        all_layers = custom_vgg_model.layers
        pool5_index = custom_vgg_model.layers.index(
            custom_vgg_model.get_layer('pool5'))

        for ind, l in enumerate(all_layers):
            if ind <= pool5_index:
                l.trainable = False
        # all_layers[:pool5_index].trainable = False

        # for ind, l in enumerate(all_layers):
        #     print('Name ', l.name, 'trainable' ,l.trainable,'index',ind)

    # Train your model as usual.
    # You can Try different optimizers
    # opt = optimizers.SGD(lr=1e-5, decay=1e-6)  #OK
    # adagrad = optimizers.Adagrad( decay=1e-6)
    # opt = optimizers.Adadelta( )

    opt = optimizers.Adam(lr=1e-5, decay=1e-6)
    custom_vgg_model.compile(optimizer=opt,
                             loss='categorical_crossentropy',
                             metrics=['accuracy'])
    custom_vgg_model.summary()

    X_train, Y_train, X_valid, Y_valid, Face_Label_Dic = load_face_data(
        'data/')

    ftool = FaceTool()
    ftool.write_json(save_face_index, Face_Label_Dic)

    # Start Fine-tuning
    custom_vgg_model.fit(
        X_train,
        Y_train,
        batch_size=batch_size,
        nb_epoch=nb_epoch,
        shuffle=True,
        verbose=1,
        validation_data=(X_valid, Y_valid),
    )

    # Make predictions
    predictions_valid = custom_vgg_model.predict(X_valid,
                                                 batch_size=batch_size,
                                                 verbose=1)

    # Cross-entropy loss score
    score = log_loss(Y_valid, predictions_valid)

    # ===============Save Model===============
    print("Saved model to disk")
    model_json = custom_vgg_model.to_json()
    with open(save_model_path, "w") as json_file:
        json_file.write(model_json)
    # serialize weights to HDF5
    custom_vgg_model.save_weights(save_model_h5)

    # ===============Test===============
    face_index = prdict_one_face(custom_vgg_model, 'data/test/1.jpg')
    print Face_Label_Dic[face_index]

    face_index = prdict_one_face(custom_vgg_model, 'data/test/2.jpg')
    print Face_Label_Dic[face_index]

    face_index = prdict_one_face(custom_vgg_model, 'data/test/3.jpg')
    print Face_Label_Dic[face_index]
コード例 #9
0
def svm_oneclass(args):
    PATH = str(args.path)
    DATASET = str(args.file)
    DESCRIPTOR = str(args.desc)
    NUM_HASH = int(args.hash)
    IMG_WIDTH = int(args.width)
    IMG_HEIGHT = int(args.height)

    matrix_x = []
    matrix_y = []
    models = []
    splits = []
    nmatrix_x = []
    nmatrix_y = []

    x_train = []
    y_train = []
    nx_train = []
    ny_train = []
    plotting_labels = []
    plotting_scores = []

    vgg_model = None
    if DESCRIPTOR == 'df':
        from vggface import VGGFace
        vgg_model = VGGFace()

    print('>> EXPLORING DATASET')
    dataset_list = load_txt_file(PATH + DATASET)
    known_tuples, unknown_tuples = split_known_unknown_sets(dataset_list,
                                                            known_set_size=0.5)
    known_train, known_test = split_train_test_sets(known_tuples,
                                                    train_set_size=0.5)
    print(known_train)

    counterA = 0
    for gallery_sample in known_train:
        sample_path = gallery_sample[0]
        sample_name = gallery_sample[1]

        gallery_path = PATH + sample_path
        gallery_image = cv.imread(gallery_path, cv.IMREAD_COLOR)

        if DESCRIPTOR == 'hog':
            gallery_image = cv.resize(gallery_image, (IMG_HEIGHT, IMG_WIDTH))
            feature_vector = Descriptor.get_hog(gallery_image)
        elif DESCRIPTOR == 'df':
            feature_vector = Descriptor.get_deep_feature(gallery_image,
                                                         vgg_model,
                                                         layer_name='fc6')

        matrix_x.append(feature_vector)
        matrix_y.append(sample_name)

        counterA += 1
        print(counterA, sample_path, sample_name)

    print('>> GENERATING FILES TO SVM')
    counterSVM = 0
    for feature in matrix_x:
        y_train.insert(counterSVM, 1)
        x_train.insert(counterSVM, {})
        count_inner = 0
        for pos in feature:
            x_train[counterSVM].update({count_inner: pos})
            count_inner += 1
        counterSVM += 1

    print('>> GENERATING THE SVM MODEL')
    x_train_total = x_train + nx_train
    y_train_total = y_train + ny_train
    besthit = 0
    bestn = 0
    bestg = 0
    for n in range(1, 50):
        for g in range(-15, 3):
            nu = n / 100
            gamma = pow(2, g)
            parameters = '-s 2 -t 2'
            parameters = parameters + ' -g ' + str(gamma) + ' -n ' + str(nu)
            m = svm_train(y_train_total, x_train_total, parameters)
            hits = 0
            #print('>> LOADING KNOWN PROBE: {0} samples'.format(len(known_test)))
            counterB = 0
            for probe_sample in known_test:
                sample_path = probe_sample[0]
                sample_name = probe_sample[1]
                query_path = PATH + sample_path
                query_image = cv.imread(query_path, cv.IMREAD_COLOR)
                if DESCRIPTOR == 'hog':
                    query_image = cv.resize(query_image,
                                            (IMG_HEIGHT, IMG_WIDTH))
                    feature_vector = Descriptor.get_hog(query_image)
                elif DESCRIPTOR == 'df':
                    feature_vector = Descriptor.get_deep_feature(
                        query_image, vgg_model)
                count_inner = 0
                x_teste = []
                y_teste = []
                y_teste.insert(0, 1)
                x_teste.insert(0, {})
                for pos in feature_vector:
                    x_teste[0].update({count_inner: pos})
                    count_inner += 1
                p_label, p_acc, p_val = svm_predict(y_teste, x_teste, m)
                counterB += 1
                # Getting known set plotting relevant information
                plotting_labels.append([(sample_name, 1)])
                plotting_scores.append([(sample_name, p_label[0])])
                if p_label[0] == 1:
                    hits = hits + 1

            print('>> LOADING UNKNOWN PROBE: {0} samples'.format(
                len(unknown_tuples)))
            counterC = 0
            for probe_sample in unknown_tuples:
                sample_path = probe_sample[0]
                sample_name = probe_sample[1]
                query_path = PATH + sample_path
                query_image = cv.imread(query_path, cv.IMREAD_COLOR)
                if DESCRIPTOR == 'hog':
                    query_image = cv.resize(query_image,
                                            (IMG_HEIGHT, IMG_WIDTH))
                    feature_vector = Descriptor.get_hog(query_image)
                elif DESCRIPTOR == 'df':
                    feature_vector = Descriptor.get_deep_feature(
                        query_image, vgg_model)

                count_inner = 0
                x_teste = []
                y_teste = []
                y_teste.insert(0, -1)
                x_teste.insert(0, {})
                for pos in feature_vector:
                    x_teste[0].update({count_inner: pos})
                    count_inner += 1
                p_label, p_acc, p_val = svm_predict(y_teste, x_teste, m)
                counterC += 1
                # Getting unknown set plotting relevant information
                plotting_labels.append([(sample_name, -1)])
                plotting_scores.append([(sample_name, p_label[0])])
                if p_label[0] == -1:
                    hits = hits + 1
            if hits > besthit:
                besthit = hits
                bestn = nu
                bestg = gamma
    # cmc_score_norm = np.divide(cmc_score, counterA)
    # generate_cmc_curve(cmc_score_norm, DATASET + '_' + str(NUM_HASH) + '_' + DESCRIPTOR)

    print(besthits)
    print(bestn)
    print(bestg)

    pr = generate_precision_recall(plotting_labels, plotting_scores)
    roc = generate_roc_curve(plotting_labels, plotting_scores)
    return pr, roc
コード例 #10
0
def plshface(args):
    PATH = str(args.path)
    DATASET = str(args.file)
    DESCRIPTOR = str(args.desc)
    NUM_HASH = int(args.hash)
    IMG_WIDTH = int(args.width)
    IMG_HEIGHT = int(args.height)
    TRAIN_SET_SIZE = float(args.train_set_size)

    matrix_x = []
    matrix_y = []
    splits = []

    plotting_labels = []
    plotting_scores = []

    vgg_model = None
    if DESCRIPTOR == 'df':
        vgg_model = VGGFace()

    print('>> EXPLORING DATASET')
    dataset_list = load_txt_file(PATH + DATASET)
    known_train, known_test = split_train_test_sets(
        dataset_list, train_set_size=TRAIN_SET_SIZE)

    print('>> LOADING GALLERY: {0} samples'.format(len(known_train)))
    counterA = 0
    for gallery_sample in known_train:
        sample_path = gallery_sample[0]
        sample_name = gallery_sample[1]

        gallery_path = PATH + sample_path
        gallery_image = cv.imread(gallery_path, cv.IMREAD_COLOR)

        if DESCRIPTOR == 'hog':
            gallery_image = cv.resize(gallery_image, (IMG_HEIGHT, IMG_WIDTH))
            feature_vector = Descriptor.get_hog(gallery_image)
        elif DESCRIPTOR == 'df':
            feature_vector = Descriptor.get_deep_feature(gallery_image,
                                                         vgg_model,
                                                         layer_name='fc6')

        matrix_x.append(feature_vector)
        matrix_y.append(sample_name)

        counterA += 1
        print(counterA, sample_path, sample_name)

    print('>> SPLITTING POSITIVE/NEGATIVE SETS')
    individuals = list(set(matrix_y))
    cmc_score = np.zeros(len(individuals))
    for index in range(0, NUM_HASH):
        splits.append(generate_pos_neg_dict(individuals))

    print('>> LEARNING PLS MODELS:')
    input_list = itertools.izip(splits, itertools.repeat((matrix_x, matrix_y)))
    models = Parallel(n_jobs=1, verbose=11,
                      backend='threading')(map(delayed(learn_plsh_model),
                                               input_list))

    print('>> LOADING KNOWN PROBE: {0} samples'.format(len(known_test)))
    counterB = 0
    for probe_sample in known_test:
        sample_path = probe_sample[0]
        sample_name = probe_sample[1]

        query_path = PATH + sample_path
        query_image = cv.imread(query_path, cv.IMREAD_COLOR)
        if DESCRIPTOR == 'hog':
            query_image = cv.resize(query_image, (IMG_HEIGHT, IMG_WIDTH))
            feature_vector = Descriptor.get_hog(query_image)
        elif DESCRIPTOR == 'df':
            feature_vector = Descriptor.get_deep_feature(
                query_image, vgg_model)

        vote_dict = dict(map(lambda vote: (vote, 0), individuals))
        for model in models:
            pos_list = [
                key for key, value in model[1].iteritems() if value == 1
            ]
            response = model[0].predict_confidence(feature_vector)
            for pos in pos_list:
                vote_dict[pos] += response
        result = vote_dict.items()
        result.sort(key=lambda tup: tup[1], reverse=True)

        for outer in range(len(individuals)):
            for inner in range(outer + 1):
                if result[inner][0] == sample_name:
                    cmc_score[outer] += 1
                    break

        counterB += 1
        denominator = np.absolute(np.mean([result[1][1], result[2][1]]))
        if denominator > 0:
            output = result[0][1] / denominator
        else:
            output = result[0][1]
        print(counterB, sample_name, result[0][0], output)

        # Getting known set plotting relevant information
        plotting_labels.append([(sample_name, 1)])
        plotting_scores.append([(sample_name, output)])

    cmc_score_norm = np.divide(cmc_score, counterA)
    return cmc_score_norm
コード例 #11
0
def main(args):
    #    lr_decay = decay_lr(10, 0.5)
    #    opt = Adam(lr=1e-4, decay=1e-5)

    # read label
    train_csv = pd.read_csv(args.train_csv)
    train_label = [i for i in train_csv['lianxing']]

    # read images
    train_data = np.load(open(args.train, 'rb'))
    train_data = train_data / 255.0
    train_data = np.transpose(train_data, (0, 3, 1, 2))

    print('train data and label shape: ', train_data.shape,
          np.shape(train_label))
    print('Train Data is done!')

    train_label = to_categorical(train_label, num_classes=args.num_classes)

    if args.val:
        val_csv = pd.read_csv(args.val_csv)
        val_label = [i for i in val_csv['lianxing']]
        val_data = np.load(open(args.val, 'rb'))
        val_data = val_data / 255.0
        val_data = np.transpose(val_data, (0, 3, 1, 2))
        val_label = to_categorical(val_label, num_classes=args.num_classes)
        print('val data and label shape: ', val_data.shape,
              np.shape(val_label))
        print('Val Data is done!')
    # model
    print('get model....')
    model_name = args.model

    model = VGGFace(include_top=False,
                    model=model_name,
                    weights='vggface',
                    pooling='avg',
                    input_shape=(224, 224, 3),
                    classes=args.num_classes)

    # if you want to change the layers of model
    #    fc5 = model.layers[-8].output
    #    fc6 = Flatten()(fc5)
    #    fc7_1 = Dense(256, activation='relu', name='fc7_1')(fc6)
    #    dropout7_1 = Dropout(0.3)(fc7_1)
    #    fc7_2 = Dense(128, activation='relu', name='fc7_2')(dropout7_1)
    #    prediction = Dense(classes, activation='softmax')(fc7_2)
    #    model = Model(inputs=model.input, outputs=prediction)

    model.summary()
    model.compile(optimizer=args.opt,
                  loss='categorical_crossentropy',
                  metrics=['accuracy', precision, recall, fmeasure])

    # callbacks
    filepath = args.out_dir + model_name + '_model/' + model_name + "-weights-improvement-{epoch:02d}-{val_acc:.2f}.hdf5"
    model_checkpoint = ModelCheckpoint(filepath,
                                       monitor='val_acc',
                                       verbose=1,
                                       save_best_only=True)
    tensorboard_log = TensorBoard(args.out_dir + model_name + '_tensorboard/',
                                  write_graph=True,
                                  histogram_freq=0)
    csv = CSVLogger(args.out_dir + model_name + '_csv/' + model_name + '.csv')

    # train
    print('Trainning model......')
    if args.val:
        model.fit(train_data,
                  train_label,
                  batch_size=args.batch_size,
                  epochs=args.epochs,
                  callbacks=[model_checkpoint, csv, tensorboard_log],
                  verbose=1,
                  shuffle=True,
                  validation_data=(val_data, val_label))
    else:
        model.fit(train_data,
                  train_label,
                  batch_size=args.batch_size,
                  epochs=args.epochs,
                  callbacks=[model_checkpoint, csv, tensorboard_log],
                  verbose=1,
                  shuffle=True)
コード例 #12
0
 def __init__(self, vggpath='', basis3dmm=None, trainable=True):
     self.basis3dmm = basis3dmm
     self.model = VGGFace(vggpath, trainable)
コード例 #13
0
if __name__ == '__main__':

    # Initialize Parameters
    root = '/Users/azinasgarian/Documents/Data/UNBC/Images'
    path = './data/high_pain.pkl'
    output_path = '/Users/azinasgarian/Desktop/test/'
    rotation_degree = 15
    seq_len = 15
    shear_x = 8
    shear_y = 8

    print "Building VGG Model ... "
    # pooling: None, avg or max
    model_conv = VGGFace(model='vgg16',
                         include_top=False,
                         input_shape=(224, 224, 3),
                         pooling='avg')
    print "VGG Model is built! "

    print "Reading and extracting vgg features ..."
    Data = read_data(path, root, rotation_degree, shear_x, shear_y, seq_len,
                     output_path)
    print "Features are extracted!"

    print "Saving data into .h5 file."
    dd.io.save('tmp.h5', Data)
    print "Data is saved!"

    print "All Done!"
コード例 #14
0
from vggface import VGGFace
from scipy import misc
import copy
import numpy as np

if __name__ == '__main__':

    model = VGGFace(weights=None)
    model.load_weights(
        '../temp/weight/rcmalli_vggface_tf_weights_tf_ordering.h5')
    print 'model loaded.'
    im = misc.imread('../image/ak2.jpg')
    im = misc.imresize(im, (224, 224)).astype(np.float32)
    aux = copy.copy(im)
    im[:, :, 0] = aux[:, :, 2]
    im[:, :, 2] = aux[:, :, 0]
    # Remove image mean
    im[:, :, 0] -= 93.5940
    im[:, :, 1] -= 104.7624
    im[:, :, 2] -= 129.1863
    im = np.expand_dims(im, axis=0)

    res = model.predict(im)
    print np.argmax(res[0])