コード例 #1
0
    def run(self, args):
        if (args.use_svm):
            settings.USE_SVM = True
            print('use svm')
        else:
            settings.USE_SVM = False
            print('use distance')
        plc = PLCControl()
        face_recognition = Recognition()
        video_capture = VideoProcessor(
            self.camera.get_url(), output_queue=frame_queue)
        video_capture.start_processing()
        while True:
            # Capture frame-by-frame
            frame = video_capture.get_latest_frame()
            if frame is None:
                continue

            faces = face_recognition.identify(frame)
            legal = False
            for f in faces:
                recognition_result_processor.put_result(f.result)
                #recognition_result_processor.send_email(f.result)
                if (f.result.result == settings.LEGAL):
                    legal = True

            if len(faces) > 0:
                recognition_result_processor.push_result()

            if legal:
                plc.open_door()

            self.add_overlays(frame, faces)
            if args.debug:
                cv2.imshow('Video', frame)
                if cv2.waitKey(1) & 0xFF == ord('q'):
                    break

        # When everything is done, release the capture
        video_capture.stop_processing()
        video_capture.cleanup()
        cv2.destroyAllWindows()
コード例 #2
0
def main(args):
    video_capture = VideoProcessor(
        'rtsp://{username}:{password}@{ip}/cam/realmonitor?channel=1&subtype=0'
        .format(username=settings.USERNAME,
                password=settings.PASSWORD,
                ip=settings.IP),
        output_queue=frame_queue)

    detection = Detection()
    num = 0
    count = 0
    path = 'faces'
    if not os.path.exists(path):
        os.mkdir(path)
    path = path + '/' + args.id
    if not os.path.exists(path):
        os.mkdir(path)
    print('capture faces for : ', str(args.id))
    video_capture.start_processing()
    while True:
        frame = video_capture.get_latest_frame()
        if frame is None:
            continue

        faces = detection.find_faces(frame)
        for face in faces:
            filename = path + '/' + str(num) + '.jpg'
            if num % 2 == 0:
                cv2.imwrite(filename, face.face_image_raw)
                count = count + 1

        add_overlays(frame, faces, count)
        num = num + 1
        cv2.imshow('face capture', frame)

        if cv2.waitKey(1) & 0xFF == ord('q'):
            break

    print('capture faces num: ', str(num))
def main():
    """Main function for the program.  Everything starts here.

    :return: None
    """
    global resize_output, resize_output_width, resize_output_height, \
           resize_output, resize_output_width, resize_output_height, \
           device_count


    if (not handle_args()):
        print_usage()
        return 1

    # get list of all the .mp4 files in the image directory
    input_video_filename_list = os.listdir(input_video_path)
    input_video_filename_list = [i for i in input_video_filename_list if i.endswith('.mp4')]
    if (len(input_video_filename_list) < 1):
        # no images to show
        print('No video (.mp4) files found')
        return 1

    resting_image = cv2.imread("resting_image.png")
    if (resting_image is None):
        resting_image = numpy.zeros((800, 600, 3), numpy.uint8)

    if (resize_output):
        resting_image = cv2.resize(resting_image,
                                   (resize_output_width, resize_output_height),
                                   cv2.INTER_LINEAR)

    # Set logging level to only log errors
    mvnc.global_set_option(mvnc.GlobalOption.RW_LOG_LEVEL, 3)

    devices = mvnc.enumerate_devices()
    if len(devices) < 1:
        print('No NCS device detected.')
        print('Insert device and try again!')
        return 1

    if (device_count < 1) or (device_count > len(devices)):
        device_count = len(devices)


    # Create an object detector processor for each device that opens
    # and store it in our list of processors
    obj_detect_list = list()
    idle_obj_detect_list = list()

    device_number = 0

    for one_device in devices:
        try:
            obj_detect_dev = mvnc.Device(one_device)
            obj_detect_dev.open()
            print("opened device " + str(device_number))
            obj_detector_proc = Yolov2_tiny_Processor(NETWORK_GRAPH_FILENAME, obj_detect_dev,
                                                      inital_box_prob_thresh=min_score_percent / 100.0,
                                                      classification_mask=object_classifications_mask,
                                                      name="object detector " + str(device_number))
            if (device_number < device_count):
                obj_detect_list.append(obj_detector_proc)
            else:
                idle_obj_detect_list.append(obj_detector_proc)

            device_number += 1

        except:
            print("Could not open device " + str(device_number) + ", trying next device")
            pass


    if len(obj_detect_list) < 1:
        print('Could not open any NCS devices.')
        print('Reinsert devices and try again!')
        return 1

    print("Using " + str(len(obj_detect_list)) + " devices for object detection")
    print_hot_keys()

    cv2.namedWindow(cv_window_name)
    cv2.moveWindow(cv_window_name, 10,  10)
    cv2.waitKey(1)

    exit_app = False
    while (True):
        for input_video_file in input_video_filename_list :

            for one_obj_detect_proc in obj_detect_list:
                print("using object detector: " + one_obj_detect_proc.get_name())
                one_obj_detect_proc.drain_queues()

            # video processor that will put video frames images on the object detector's input FIFO queue
            video_proc = VideoProcessor(input_video_path + '/' + input_video_file,
                                        network_processor_list = obj_detect_list)
            video_proc.start_processing()

            frame_count = 0
            start_time = time.time()
            last_throttle_time = start_time
            end_time = start_time
            uptime=time.time()
            while(True):
                done = False
                for one_obj_detect_proc in obj_detect_list:
                    try:
                        (filtered_objs, display_image) = one_obj_detect_proc.get_async_inference_result()
                        print("resive result:",time.time()-uptime)
                        uptime=time.time()
                    except :
                        print("exception caught in main")
                        raise


                    # check if the window is visible, this means the user hasn't closed
                    # the window via the X button
                    prop_val = cv2.getWindowProperty(cv_window_name, cv2.WND_PROP_ASPECT_RATIO)
                    if (prop_val < 0.0):
                        end_time = time.time()
                        video_proc.stop_processing()
                        video_proc.cleanup()
                        exit_app = True
                        break

                    running_fps = frame_count / (time.time() - start_time)
                    overlay_on_image(display_image, filtered_objs, running_fps)
                    print("show time:",time.time()-uptime)

                    if (resize_output):
                        display_image = cv2.resize(display_image,
                                                   (resize_output_width, resize_output_height),
                                                   cv2.INTER_LINEAR)
                    cv2.imshow(cv_window_name, display_image)

                    raw_key = cv2.waitKey(1)
                    if (raw_key != -1):
                        if (handle_keys(raw_key, obj_detect_list) == False):
                            end_time = time.time()
                            exit_app = True
                            done = True
                            break

                    frame_count += 1

                    #if (one_obj_detect_proc.is_input_queue_empty()):
                    if (not video_proc.is_processing()):
                        # asssume the video is over.
                        end_time = time.time()
                        done = True
                        print('video processor not processing, assuming video is finished.')
                        break

                #if (frame_count % 100) == 0:
                if ((time.time() - last_throttle_time) > throttle_check_seconds):
                    #long movie, check for throttling devices
                    # throttling = one_obj_detect_proc.get_device().get_option(mvnc.DeviceOption.RO_THERMAL_THROTTLING_LEVEL)
                    last_throttle_time = time.time()
                    print("movie not done, but going a long time so adjust for throttling")
                    video_proc.pause()
                    do_throttle_adjustment(obj_detect_list, idle_obj_detect_list)
                    video_proc.unpause()

                if (done) : break

            frames_per_second = frame_count / (end_time - start_time)
            print('Frames per Second: ' + str(frames_per_second))

            # check for throttling devices and save in throttling list
            throttling_list = list()
            for one_obj_detect_proc in obj_detect_list:
                throttling = one_obj_detect_proc.get_device().get_option(mvnc.DeviceOption.RO_THERMAL_THROTTLING_LEVEL)
                if (throttling > 0):
                    print("\nDevice " + one_obj_detect_proc.get_name() + " is throttling, level is: " + str(throttling))
                    throttling_list.append(one_obj_detect_proc)


            if (not exit_app):
                # rest between movies, display an image while resting
                resting_display_image = cv2.resize(resting_image,
                                                   (display_image.shape[1], display_image.shape[0]),
                                                   cv2.INTER_LINEAR)
                cv2.imshow(cv_window_name, resting_display_image)

                if ((len(throttling_list) > len(idle_obj_detect_list))):
                    # more devices throttling than we have in the idle list
                    # so do extra rest by applying a multiplier to the rest time
                    print("throttling devices... resting")
                    cv2.waitKey(rest_seconds * 1000 * rest_throttling_multiplier)
                else:
                    cv2.waitKey(rest_seconds * 1000)

            # remove the throttling devices from the main list and put them at the end so they will
            # be moved to the idle list with priority
            for one_throttling in throttling_list:
                obj_detect_list.remove(one_throttling)
                obj_detect_list.append(one_throttling)


            num_idle = len(idle_obj_detect_list)
            if (num_idle > len(obj_detect_list)):
                num_idle = len(obj_detect_list)
            if (num_idle > 0):
                # replace one of the devices with an idle device
                for idle_index in range(0, num_idle):
                    #for one_idle_proc in idle_obj_detect_list:
                    obj_detect_list.insert(0, idle_obj_detect_list.pop(0))

                for idle_count in range(0, num_idle):
                    idle_obj_detect_list.append(obj_detect_list.pop())

            video_proc.stop_processing()
            video_proc.cleanup()

            if (exit_app):
                break

        if (exit_app):
            break


    # Clean up the graph and the device
    for one_obj_detect_proc in obj_detect_list:
        cv2.waitKey(1)
        one_obj_detect_proc.cleanup(True)

    cv2.destroyAllWindows()
コード例 #4
0
def main():
    """Main function for the program.  Everything starts here.

    :return: None
    """
    global resize_output, resize_output_width, resize_output_height, \
           obj_detector_proc, resize_output, resize_output_width, resize_output_height, video_proc

    if (not handle_args()):
        print_usage()
        return 1

    # get list of all the .mp4 files in the image directory
#    input_video_filename_list = os.listdir(input_video_path)
#    input_video_filename_list = [i for i in input_video_filename_list if i.endswith('.mp4')]
#    if (len(input_video_filename_list) < 1):
#        # no images to show
#        print('No video (.mp4) files found')
#        return 1

# Set logging level to only log errors
    mvnc.global_set_option(mvnc.GlobalOption.RW_LOG_LEVEL, 3)

    devices = mvnc.enumerate_devices()
    if len(devices) < 1:
        print('No NCS device detected.')
        print('Insert device and try again!')
        return 1

    # Pick the first stick to run the network
    # use the first NCS device that opens for the object detection.
    # open as many devices as we find
    dev_count = 0
    ncs_devices = []
    obj_detectors = []
    # open as many devices as detected
    for one_device in devices:
        print('one device ', one_device, 'dev_count ', dev_count, 'devices ',
              devices)
        obj_detect_dev = mvnc.Device(one_device)
        status = obj_detect_dev.open()
        ncs_devices.append(obj_detect_dev)
        obj_detector_proc = SsdMobileNetProcessor(
            NETWORK_GRAPH_FILENAME,
            ncs_devices,  # obj_detect_dev,
            inital_box_prob_thresh=min_score_percent / 100.0,
            classification_mask=object_classifications_mask)
        obj_detectors.append(obj_detector_proc)
        print("opened device " + str(dev_count), 'status ', status)
        dev_count += 1

    print('ncs_devices', ncs_devices)

    cv2.namedWindow(cv_window_name)
    cv2.moveWindow(cv_window_name, 10, 10)
    cv2.waitKey(1)

    #obj_detector_proc = SsdMobileNetProcessor(NETWORK_GRAPH_FILENAME, ncs_devices[0], # obj_detect_dev,
    #                                         inital_box_prob_thresh=min_score_percent/100.0,
    #                                         classification_mask=object_classifications_mask)

    exit_app = False

    # output file
    # fourcc = cv2.VideoWriter_fourcc(*"MJPG")
    fourcc = cv2.VideoWriter_fourcc(*"mp4v")
    filenum = 1
    # keep the number of video files to a reasonable number in the current directory
    while (filenum < 20):
        doesexist = os.path.isfile("output" + str(filenum) + ".mp4")
        if (doesexist == False):
            out_filename = "output" + str(filenum) + ".mp4"
            break
        filenum += 1

    print("Using output file name " + out_filename)

    outfile = cv2.VideoWriter(out_filename, fourcc, 11.0, (640, 480))

    while (True):
        #        for input_video_file in input_video_filename_list :

        # video processor that will put video frames images on the object detector's input FIFO queue
        #            video_proc = VideoProcessor(input_video_path + '/' + input_video_file,
        #                                         network_processor = obj_detector_proc)
        # use the video cam (0)  ***swb***
        video_proc = VideoProcessor(
            0, network_processor=obj_detectors[0])  # obj_detector_proc)
        video_proc.start_processing()

        frame_count = 0
        start_time = time.time()
        end_time = start_time

        while (True):
            try:
                (filtered_objs, display_image
                 ) = obj_detector_proc.get_async_inference_result()
            except:
                print("exception caught in main")
                raise

            # check if the window is visible, this means the user hasn't closed
            # the window via the X button
            prop_val = cv2.getWindowProperty(cv_window_name,
                                             cv2.WND_PROP_ASPECT_RATIO)
            if (prop_val < 0.0):
                end_time = time.time()
                video_proc.stop_processing()
                exit_app = True
                break

            overlay_on_image(display_image, filtered_objs)

            if (resize_output):
                display_image = cv2.resize(
                    display_image, (resize_output_width, resize_output_height),
                    cv2.INTER_LINEAR)
            cv2.imshow(cv_window_name, display_image)

            outfile.write(display_image)

            raw_key = cv2.waitKey(1)
            if (raw_key != -1):
                if (handle_keys(raw_key, obj_detector_proc) == False):
                    end_time = time.time()
                    exit_app = True
                    video_proc.stop_processing()
                    continue

            frame_count += 1

            if (obj_detector_proc.is_input_queue_empty()):
                end_time = time.time()
                print(
                    'Neural Network Processor has nothing to process, assuming video is finished.'
                )
                break

        frames_per_second = frame_count / (end_time - start_time)
        print('Frames per Second: ' + str(frames_per_second))

        throttling = obj_detect_dev.get_option(
            mvnc.DeviceOption.RO_THERMAL_THROTTLING_LEVEL)
        if (throttling > 0):
            print("\nDevice is throttling, level is: " + str(throttling))
            print("Sleeping for a few seconds....")
            cv2.waitKey(2000)

        #video_proc.stop_processing()
        cv2.waitKey(1)

        video_proc.cleanup()

        if (exit_app):
            break
    #if (exit_app):
    #    break

    # Clean up the graph and the device
    obj_detector_proc.cleanup()
    obj_detect_dev.close()
    obj_detect_dev.destroy()

    cv2.destroyAllWindows()
    outfile.release()