コード例 #1
0
class SensorFactory(GstRtspServer.RTSPMediaFactory):
    def __init__(self, url, **properties):
        super(SensorFactory, self).__init__(**properties)
        self.vs = VideoStream(url).start()
        self.number_frames = 0
        self.fps = 20
        self.duration = 1 / self.fps * Gst.SECOND  # duration of a frame in nanoseconds
        self.shape = (720, 1280)
        self.launch_string = 'appsrc name=source is-live=true block=true format=GST_FORMAT_TIME ' \
                             'caps=video/x-raw,format=BGR,width={},height={} ' \
                             '! videoconvert ! video/x-raw,format=I420 ' \
                             '! x264enc ! queue ' \
                             '! rtph264pay config-interval=1 name=pay0 pt=96'.format(self.shape[1], self.shape[0])

    def on_need_data(self, src, lenght):
        # time.sleep(0.1)
        frame = self.vs.read()
        if frame is None:
            return
        # print(frame)
        frame = cv2.resize(frame, self.shape[::-1])
        data = frame.tostring()
        buf = Gst.Buffer.new_allocate(None, len(data), None)
        buf.fill(0, data)
        buf.duration = self.duration
        timestamp = self.number_frames * self.duration
        buf.pts = buf.dts = int(timestamp)
        buf.offset = timestamp
        self.number_frames += 1
        retval = src.emit('push-buffer', buf)
        print('pushed buffer, frame {}, duration {} ns, durations {} s'.format(self.number_frames, self.duration, self.duration / Gst.SECOND))
        if retval != Gst.FlowReturn.OK:
            print(retval)

    def do_create_element(self, url):
        return Gst.parse_launch(self.launch_string)

    def do_configure(self, rtsp_media):
        self.number_frames = 0
        appsrc = rtsp_media.get_element().get_child_by_name('source')
        appsrc.connect('need-data', self.on_need_data)
コード例 #2
0
def main():
    vs = VideoStream()
    vs.start()
    names, known_encodings = load_known_faces('./faces/known_faces')
    print(len(known_encodings))
    while vs.isOpened():
        image = vs.read()

        gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
        face_locations = fr.face_locations(image, model='hog')
        img_face_encodings = fr.face_encodings(image, face_locations)
        match_matrix = [
            fr.compare_faces(known_encodings, f, tolerance=0.6)
            for f in img_face_encodings
        ]
        print(match_matrix)
        img_with_faces = draw_bbox_on_img(image, face_locations)

        cv2.imshow('frame', img_with_faces)
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break

    vs.close()
    cv2.destroyAllWindows()
コード例 #3
0
from face_decorator import allEAR
from face_decorator import FaceDecorator
from eye_aspect_ratio import EyeAspectRatio
from config import args

vs = VideoStream(args["path"]).start()
workers = [ GrayConverter(), FaceDetector(), FaceMarker(args["landmark_model"]), EyeAspectRatio(), FaceDecorator() ]

winname = args["display"]
graphWin = "Graph"
cv2.namedWindow(winname)
cv2.moveWindow(winname, 200, 300)
cv2.namedWindow(graphWin)
cv2.moveWindow(graphWin, 900, 300)
while True:
    frame = vs.read()
    if frame is None: break

    info = {}
    for w in workers: w.workon(frame, info)
    
    cv2.imshow(winname, info["output"])
    cv2.imshow(graphWin, info["graph"])
    key = cv2.waitKey(10) & 0xFF
    if key == ord('q') or key == 27:
        break
    elif key == ord(' '):
        cv2.waitKey(0)

cv2.destroyAllWindows()
vs.stop()
コード例 #4
0
# For fps plotting
time_arr = []
fps_arr = []
start_time = time.time()


# for frame in camera.capture_continuous(rawCapture, format="bgr", use_video_port=True):
try:
    while True:
        bboxes = []
        # Start timer (for calculating frame rate)
        t1 = cv2.getTickCount()

        # Grab frame from video stream
        current_frame = videostream.read()
        input_data = img_to_input(current_frame, model.width, model.height, model.floating_model)

        # Infer model
        boxes, classes, scores = model.infer(input_data)

        max_area = -1

        # Loop over all detections and draw detection box if confidence is above minimum threshold
        for i in range(len(scores)):
            if min_conf_threshold < scores[i] <= 1.0:
                object_name = labels[int(classes[i])]
                if object_name != 'person':
                    continue

                # Get bounding box coordinates and draw box
コード例 #5
0
# Initialize video stream
videostream = VideoStream(resolution=(CAMERA_RES[0], CAMERA_RES[1])).start()
time.sleep(1)

# Create list of parking spots
parkingspots = [
    ParkingSpot("PS1", 100, 100, 300, 500),
    ParkingSpot("PS2", 350, 100, 550, 500)]


while True:
    # Start frame rate timer
    t1 = cv2.getTickCount()

    # Get snapshot of video stream, convert to correct color space and resize according to input requirements
    frame = videostream.read()
    frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
    frame_resized = cv2.resize(frame_rgb, (input_width, input_height))
    
    input_data = np.expand_dims(frame_resized, axis=0)

    # Perform the object detection by running the model with the image as input
    interpreter.set_tensor(input_details[0]['index'], input_data)
    interpreter.invoke()

    # Detection results    
    boxes = interpreter.get_tensor(output_details[0]['index'])[0] # Object box cooridinates: boxes[][ymin, xmin, ymax, xmax]
    classes = interpreter.get_tensor(output_details[1]['index'])[0] # Index of object type in labels.txt file: classes[][index]
    scores = interpreter.get_tensor(output_details[2]['index'])[0] # Model confidence in class definition: scores[][float]
    
    tracked_objects = 0
コード例 #6
0
def recognize_video(detector,
                    embedder: Embedder,
                    recognizer: Recognizer,
                    detector_params='default',
                    source=0):

    # инициализация видеопотока
    print('Starting video stream...')
    vs = VideoStream(src=source).start()

    if not is_detector(detector):
        raise TypeError('Incorrect type of detector')

    # разогрев камеры
    time.sleep(0.5)

    # запуск оценщика пропускной способности FPS
    fps = FPS().start()

    # цикл по фреймам из видео
    while True:

        frame = vs.read()

        if detector_params == 'default':
            faces_roi, boxes = detector.calc_image(frame, return_mode='both')

        elif type(detector) == DetectorSSD:
            confidence = detector_params[0]
            faces_roi, boxes = detector.calc_image(frame,
                                                   confidence=confidence,
                                                   return_mode='both')

        elif type(detector) == DetectorVJ or type(detector) == DetectorLBP:
            [scale_factor, min_neighbors] = detector_params
            faces_roi, boxes = detector.calc_image(frame,
                                                   scale_factor=scale_factor,
                                                   min_neighbors=min_neighbors,
                                                   return_mode='both')

        elif type(detector) == DetectorHOG or type(detector) == DetectorMMOD:
            upsampling_times = detector_params[0]
            faces_roi, boxes = detector.calc_image(
                frame, upsampling_times=upsampling_times, return_mode='both')

        for i in range(len(faces_roi)):

            embeddings = embedder.calc_face(faces_roi[i])
            name = recognizer.recognize(embeddings)
            start_x, start_y, end_x, end_y = boxes[i]

            text = '{}'.format(name)
            y = start_y - 10 if start_y - 10 > 10 else start_y + 10
            cv2.rectangle(frame, (start_x, start_y), (end_x, end_y),
                          (0, 0, 255), 2)
            cv2.putText(frame, text, (start_x, y), cv2.FONT_HERSHEY_SIMPLEX,
                        0.45, (0, 0, 255), 2)

        # обновление счетчика FPS
        fps.update()

        # показ выходного фрейма
        cv2.imshow('Frame', frame)
        key = cv2.waitKey(1) & 0xFF

        # завершение при нажатии 'q'
        if key == ord("q"):
            break

    fps.stop()
    print('Elasped time: {:.2f}'.format(fps.elapsed()))
    print('Approx. FPS: {:.2f}'.format(fps.fps()))

    cv2.destroyAllWindows()
    vs.stop()
コード例 #7
0
def m():
    global output, heatmap_image, total_people, field1_count, field2_count

    frame_rate_calc = 1
    freq = cv2.getTickFrequency()

    videostream = VideoStream(VIDEO_PATH).start()

    color_f1 = (0, 0, 255)
    color_f2 = (255, 0, 0)
    heatmap = np.zeros((720, 1270, 3), dtype=np.uint8)
    ht_color = (191, 255, 1)

    while True:
        t1 = cv2.getTickCount()

        frame1 = videostream.read()
        frame = frame1.copy()
        boxes, classes, scores = generate_detections(frame, interpreter)

        total_people = 0
        field1_count = 0
        field2_count = 0
        for i in range(len(scores)):
            if ((scores[i] > THRESHOLD) and (scores[i] <= 1.0)):
                ymin = int(max(1, (boxes[i][0] * imH)))
                xmin = int(max(1, (boxes[i][1] * imW)))
                ymax = int(min(imH, (boxes[i][2] * imH)))
                xmax = int(min(imW, (boxes[i][3] * imW)))

                total_people = total_people + 1

                center_x = int((xmin + xmax) / 2)
                center_y = int((ymin + ymax) / 2)
                center_coor = (center_x, center_y)

                color_bb = (10, 200, 10)
                cv2.circle(frame, center_coor, 10, color_bb, cv2.FILLED)

                pts_f1 = [[522, 138], [1066, 522], [1200, 270], [580, 30]]
                pts_f2 = [[172, 142], [410, 607], [657, 440], [319, 142]]

                create_polygon(pts_f1, frame, color_f1)
                create_polygon(pts_f2, frame, color_f2)

                center_point = Point(center_x, center_y)
                polygon_f1 = Polygon(pts_f1)
                polygon_f2 = Polygon(pts_f2)

                if is_field_contain_center(polygon_f1, center_point):
                    field1_count = field1_count + 1
                    color_bb = color_f1

                if is_field_contain_center(polygon_f2, center_point):
                    field2_count = field2_count + 1
                    color_bb = color_f2

                draw_bounding_boxes(frame, classes, xmin, xmax, ymin, ymax,
                                    color_bb, labels)

                if (heatmap[center_y, center_x][0] !=
                        0) and (heatmap[center_y, center_x][1] !=
                                0) and (heatmap[center_y, center_x][2] != 0):
                    b = heatmap[center_y, center_x][0]
                    g = heatmap[center_y, center_x][1]
                    r = heatmap[center_y, center_x][2]

                    b = b - b * 0.5
                    g = g - g * 0.2
                    r = r + r * 0.5

                    cv2.circle(heatmap, center_coor, 10, (b, g, r), cv2.FILLED)
                else:
                    cv2.circle(heatmap, center_coor, 10, ht_color, cv2.FILLED)

        cv2.putText(frame, 'FPS: {0:.2f}'.format(frame_rate_calc), (30, 50),
                    cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 0), 2, cv2.LINE_AA)
        frame = cv2.resize(frame, (698, 396))

        t2 = cv2.getTickCount()
        time1 = (t2 - t1) / freq
        frame_rate_calc = 1 / time1

        overlay = frame1
        alpha_backgroud = 0.7
        alpha_heatmap = 0.9
        cv2.addWeighted(overlay, alpha_heatmap, frame1, 1 - alpha_heatmap, 0,
                        frame1)
        cv2.addWeighted(heatmap, alpha_backgroud, frame1, 1 - alpha_backgroud,
                        0, frame1)

        frame2 = cv2.resize(frame1, (698, 396))

        output = frame.copy()
        heatmap_image = frame2
コード例 #8
0
ファイル: main.py プロジェクト: NavidMia/mmnt
class Moment(object):
    def __init__(self):
        self.stop = False
        logging.basicConfig()
        self.logger = logging.getLogger("MMNT")
        if DEBUG:
            self.logger.setLevel(logging.DEBUG)
        else:
            self.logger.setLevel(logging.INFO)
        self.logger.info("Initializing")

        self.masterSampleTime = time.time()
        self.slaveSampleTime = time.time()

        self.humanSampleTime = time.time()
        self.micSampleTime = time.time()

        self.logger.debug("Initializing motor control")
        self.mc = MotorControl()
        self.mc.resetMotors()

        self.logger.debug("Initializing microphone")
        dev = usb.core.find(idVendor=0x2886, idProduct=0x0018)
        if not dev:
            sys.exit("Could not find ReSpeaker Mic Array through USB")
        self.mic = Tuning(dev)
        self.mic.write("NONSTATNOISEONOFF", 1)
        self.mic.write("STATNOISEONOFF", 1)
        self.mic.write("ECHOONOFF", 1)

        self.logger.debug("Initializing video streams")
        self.topCamStream = VideoStream(1)
        self.botCamStream = VideoStream(2)

        self.logger.debug("Initializing models")
        self.ht_model = ht.get_model()
        self.tfPose = TfPoseEstimator(get_graph_path(TF_MODEL),
                                      target_size=(VideoStream.DEFAULT_WIDTH,
                                                   VideoStream.DEFAULT_HEIGHT))
        self.logger.info("Initialization complete")

        self.topCamState = State.IDLE
        self.botCamState = State.IDLE

        self.topCamAngle = 0
        self.topAngleUpdated = False
        self.botCamAngle = 180
        self.botAngleUpdated = False
        self.master = Cams.TOP
        self.lastMaster = Cams.TOP

        self.botCamProc = None
        self.topCamProc = None

        self.audioMap = Map(15)
        self.checkMic()

    def stop(self):
        self.stop = True

    def updateTopAngle(self, angle):
        if abs(angle - self.topCamAngle) > ANGLE_THRESHOLD and abs(
                angle - self.botCamAngle) > OVERLAP_THRESHOLD:
            self.topCamAngle = angle
            self.topAngleUpdated = True

    def updateBotAngle(self, angle):
        if abs(angle - self.botCamAngle) > ANGLE_THRESHOLD and abs(
                angle - self.topCamAngle) > OVERLAP_THRESHOLD:
            self.botCamAngle = angle
            self.botAngleUpdated = True

    def updatePositions(self):
        # Send Serial Commands
        if self.topAngleUpdated and self.botAngleUpdated:
            self.logger.debug("Top Angle: {}".format(self.topCamAngle))
            self.logger.debug("Bot Angle: {}".format(self.botCamAngle))
            self.topAngleUpdated = False
            self.botAngleUpdated = False
            self.mc.runMotors(self.topCamAngle, self.botCamAngle)
        elif self.topAngleUpdated:
            self.logger.debug("Top Angle: {}".format(self.topCamAngle))
            self.topAngleUpdated = False
            self.mc.runTopMotor(self.topCamAngle)
        elif self.botAngleUpdated:
            self.logger.debug("Bot Angle: {}".format(self.botCamAngle))
            self.botAngleUpdated = False
            self.mc.runBotMotor(self.botCamAngle)

    def isWithinNoiseFov(self, angle):
        topDiff = abs(angle - self.topCamAngle)
        botDiff = abs(angle - self.botCamAngle)

        if topDiff < NOISE_ANGLE_THRESHOLD:
            self.topCamState |= State.NOISE
            if self.topCamState == State.BOTH:
                self.master = Cams.TOP
            return True
        else:
            self.topCamState &= ~State.NOISE
        if botDiff < NOISE_ANGLE_THRESHOLD:
            self.botCamState |= State.NOISE
            if self.botCamState == State.BOTH:
                self.master = Cams.BOT
            return True
        else:
            self.botCamState &= ~State.NOISE

        return False

    def checkMic(self):
        speechDetected, micDOA = self.mic.speech_detected(), self.mic.direction
        if not speechDetected:
            # self.audioMap.update_map_with_no_noise()
            self.topCamState &= ~State.NOISE
            self.botCamState &= ~State.NOISE
            return
        self.logger.debug("speech detected from {}".format(micDOA))
        self.audioMap.update_map_with_noise(micDOA)

        primaryMicDOA, secondaryMicDOA = self.audioMap.get_POI_location()
        if DEBUG:
            self.audioMap.print_map()
        if primaryMicDOA == -1:
            self.logger.debug("no good audio source")
            return

        self.logger.debug("mapped audio from {}".format(primaryMicDOA))

        # Check if camera is already looking at the primary noise source
        if self.isWithinNoiseFov(primaryMicDOA):
            # If camera is already looking, check the secondary noise source
            if secondaryMicDOA == -1:
                self.logger.debug("no good secondary audio source")
                return
            elif self.isWithinNoiseFov(secondaryMicDOA):
                return
            else:
                micDOA = secondaryMicDOA
        else:
            micDOA = primaryMicDOA

        topDiff = abs(micDOA - self.topCamAngle)
        botDiff = abs(micDOA - self.botCamAngle)

        # Camera is NOT looking at the noise source at this point
        # If both Cameras are not tracking a human,
        # move the closest camera
        if self.topCamState < State.HUMAN and self.botCamState < State.HUMAN:
            if botDiff < topDiff:
                self.botCamState |= State.NOISE
                self.updateBotAngle(micDOA)
                if self.botCamState == State.IDLE:
                    self.master = Cams.TOP
            else:
                self.topCamState |= State.NOISE
                self.updateTopAngle(micDOA)
                if self.topCamState == State.IDLE:
                    self.master = Cams.BOT
        # One of the cameras are on a human, if the other camera is not on a human, move it
        elif self.topCamState < State.HUMAN:
            self.topCamState |= State.NOISE
            self.updateTopAngle(micDOA)
            self.master = Cams.BOT
        elif self.botCamState < State.HUMAN:
            self.botCamState |= State.NOISE
            self.updateBotAngle(micDOA)
            self.master = Cams.TOP
        # The cameras are on a human
        else:
            # If both are on a human, move the one that's not master
            if self.topCamState == State.HUMAN and self.botCamState == State.HUMAN:
                if self.master != Cams.BOT:
                    self.botCamState |= State.NOISE
                    self.updateBotAngle(micDOA)
                else:
                    self.topCamState |= State.NOISE
                    self.updateTopAngle(micDOA)
            # One of the cameras are on a HUMAN+NOISE, move the one that's not only on a HUMAN
            elif self.topCamState == State.HUMAN:
                self.topCamState |= State.NOISE
                self.updateTopAngle(micDOA)
                self.master = Cams.BOT
            elif self.botCamState == State.HUMAN:
                self.botCamState |= State.NOISE
                self.updateBotAngle(micDOA)
                self.master = Cams.TOP

    def getBestFace(self, humans):
        midX = -1
        bestHuman = humans[0]
        maxScore = 0
        for human in humans:
            gotMidX = False
            score = 0
            currMidX = -1
            for part in headParts:
                if part in human.body_parts:
                    score += human.body_parts[part].score
                    if not gotMidX:
                        currMidX = human.body_parts[
                            part].x * VideoStream.DEFAULT_WIDTH
                        gotMidX = True
            if score > maxScore:
                maxScore = score
                midX = currMidX
                bestHuman = human

        return bestHuman, midX

    def checkHumans(self, frame, camera):
        humans = self.tfPose.inference(frame,
                                       resize_to_default=True,
                                       upsample_size=RESIZE_RATIO)
        if len(humans):
            if camera == Cams.TOP:
                self.topCamState |= State.HUMAN
                if self.topCamState == State.BOTH:
                    self.master = Cams.TOP
            else:
                self.botCamState |= State.HUMAN
                if self.botCamState == State.BOTH:
                    self.master = Cams.BOT

            if DISPLAY_VIDEO and DRAW_ON_FRAME:
                TfPoseEstimator.draw_humans(frame, humans, imgcopy=False)
            human, midX = self.getBestFace(humans)

            if (ht.is_hands_above_head(human)):
                self.logger.debug("HANDS ABOVE HEAD!!!")

            if midX != -1:
                centerDiff = abs(midX - VideoStream.DEFAULT_WIDTH / 2)
                if centerDiff > FACE_THRESHOLD:
                    if midX < VideoStream.DEFAULT_WIDTH / 2:
                        # rotate CCW
                        if camera == Cams.TOP:
                            self.updateTopAngle(
                                (self.topCamAngle +
                                 centerDiff * degreePerPixel) % 360)
                        else:
                            self.updateBotAngle(
                                (self.botCamAngle +
                                 centerDiff * degreePerPixel) % 360)
                    elif midX > VideoStream.DEFAULT_WIDTH / 2:
                        # rotate CW
                        if camera == Cams.TOP:
                            self.updateTopAngle(
                                (self.topCamAngle -
                                 centerDiff * degreePerPixel) % 360)
                        else:
                            self.updateBotAngle(
                                (self.botCamAngle -
                                 centerDiff * degreePerPixel) % 360)
        else:
            if camera == Cams.TOP:
                self.topCamState &= ~State.HUMAN
            else:
                self.botCamState &= ~State.HUMAN
        return frame

    def playVideo(self, cam):
        if cam == Cams.TOP:
            if self.botCamProc is not None and self.botCamProc.poll(
            ) is not None:
                self.botCamProc.kill()
            self.topCamProc = subprocess.Popen(
                "ffmpeg -f v4l2 -i /dev/video3 -f v4l2 /dev/video5",
                shell=True,
                stdout=subprocess.DEVNULL,
                stderr=subprocess.DEVNULL)
        elif cam == Cams.BOT:
            if self.topCamProc is not None and self.topCamProc.poll(
            ) is not None:
                self.topCamProc.kill()
            self.botCamProc = subprocess.Popen(
                "ffmpeg -f v4l2 -i /dev/video4 -f v4l2 /dev/video5",
                shell=True,
                stdout=subprocess.DEVNULL,
                stderr=subprocess.DEVNULL)

    def start(self):
        Thread(target=self.run, args=()).start()

    def run(self):
        self.stop = False
        while not self.stop:
            try:
                topFrame = self.topCamStream.read()
                botFrame = self.botCamStream.read()
                if time.time() - self.humanSampleTime > HUMAN_SAMPLE_FREQ:
                    if topFrame is not None:
                        topFrame = self.checkHumans(topFrame, Cams.TOP)
                    if botFrame is not None:
                        botFrame = self.checkHumans(botFrame, Cams.BOT)
                    self.humanSampleTime = time.time()

                if time.time() - self.micSampleTime > MIC_SAMPLE_FREQ:
                    self.checkMic()
                    self.micSampleTime = time.time()

                self.updatePositions()

                # if DISPLAY_VIDEO and topFrame is not None and botFrame is not None:
                #     if self.master == Cams.TOP:
                #         if topFrame is not None:
                #             cv.imshow('Master', topFrame)
                #         if botFrame is not None:
                #             cv.imshow('Slave', botFrame)
                #     else:
                #         if botFrame is not None:
                #             cv.imshow('Master', botFrame)
                #         if topFrame is not None:
                #             cv.imshow('Slave', topFrame)
                #     if cv.waitKey(1) == 27:
                #         pass
                if DISPLAY_VIDEO and topFrame is not None and botFrame is not None:
                    if self.master == Cams.TOP:
                        top_master = np.concatenate((topFrame, botFrame),
                                                    axis=1)
                        cv.imshow('Master + Slave', top_master)
                    else:
                        bot_master = np.concatenate((botFrame, topFrame),
                                                    axis=1)
                        cv.imshow('Master + Slave', bot_master)
                    if cv.waitKey(1) == 27:
                        pass

            except KeyboardInterrupt:
                self.logger.debug("Keyboard interrupt! Terminating.")
                break

        self.mc.resetMotors()
コード例 #9
0
# Initialize video stream
videostream = VideoStream(resolution=(imW, imH), framerate=30).start()
time.sleep(1)

# Create window
cv2.namedWindow('Object detector', cv2.WINDOW_NORMAL)

#for frame1 in camera.capture_continuous(rawCapture, format="bgr",use_video_port=True):
while True:

    # Start timer (for calculating frame rate)
    t1 = cv2.getTickCount()

    # Grab frame from video stream
    frame1 = videostream.read()

    # Acquire frame and resize to expected shape [1xHxWx3]
    frame = frame1.copy()
    frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
    frame_resized = cv2.resize(frame_rgb, (width, height))
    input_data = np.expand_dims(frame_resized, axis=0)

    # Normalize pixel values if using a floating model (i.e. if model is non-quantized)
    if floating_model:
        input_data = (np.float32(input_data) - input_mean) / input_std

    # Perform the actual detection by running the model with the image as input
    interpreter.set_tensor(input_details[0]['index'], input_data)
    interpreter.invoke()
コード例 #10
0
def main():
    ''' Main method '''

    global RUNNING

    # Create a socket and connect to the server
    s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    s.connect((HOST, PORT))

    PRINT('Connected to ' + ENC_VALUE(HOST + ':' + str(PORT)) + '.', SUCCESS)

    # connect to the arduino via serial
    ser = serial.Serial('/dev/ttyACM0', 9600, timeout=1)
    ser.flush()

    cr = '\n'

    # Start the camera video thread
    stream = VideoStream().start()
    last_serial_time = time.time(
    )  # stores the last time a serial value was sent

    while RUNNING:
        # Get the current frame read by the video stream
        try:
            stream_frame = stream.read()
            _, frame = cv2.imencode('.jpg', stream_frame, ENCODE_PARAM)

            # Send data
            send(s, [frame])

        except Exception as e:  # Prints Error
            PRINT(str(e), ERROR)

        # Recieve data
        recv_data = recv(s)

        print(recv_data[1])

        # Check if a command was sent
        if recv_data[
                DATA_IDX_COMMAND] == COMMAND_QUIT:  # If quit command was recieved RUNNING = false
            PRINT('Recieved command ' + ENC_VALUE(COMMAND_QUIT) + '.', INFO)

            joy_vrt = round(4 * (1 - 0))
            joy_fwd = round(4 * (1 - 0))
            joy_rot = round(4 * (1 + 0))

            submit = str(joy_vrt * 100 + joy_fwd * 10 + joy_rot)

            ser.write(submit.encode('utf-8'))
            ser.write(cr.encode('utf-8'))

            RUNNING = False
        elif time.time() - last_serial_time >= 1:
            if recv_data and len(
                    recv_data[1]) == 3:  # checks if recv data is empty
                print('running' + str(recv_data))
                joy_vrt = round(4 * (1 - recv_data[1][1][3]))
                joy_fwd = round(4 * (1 - recv_data[1][1][1]))
                joy_rot = round(4 * (1 + recv_data[1][1][2]))

                submit = str(joy_vrt * 100 + joy_fwd * 10 + joy_rot)
                print(submit)

                ser.write(submit.encode('utf-8'))
                ser.write(cr.encode('utf-8'))
                line = ser.readline().decode('utf-8').rstrip()
                print(line)

            last_serial_time = time.time()

    s.close()  # Closes socket
    stream.stop()  # Stops stream

    PRINT('Quit.', SUCCESS)
コード例 #11
0
class ClientHandler(threading.Thread):

    def __init__(self, sock, addr):
        threading.Thread.__init__(self)
        self.sock = sock
        self.addr = addr
        self.data_sock = None
        self.streaming = False
        self.completed = False
        self.fnbr = 0

    def run(self):
        self.handle()

    def terminate(self):
        # try to send EXIT cmd
        try:
            self.cutil.send(EXIT)
        except:
            # error if client closed
            pass
        self.sock.close()
        # if stream is live, quit stream
        if self.streaming:
            self.streaming = False
            self.streamer.join()
        if self.data_sock:
            self.data_sock.close()
    
    # control socket
    def handle(self):
        util = Util(self.sock)
        self.cutil = util

        # get video filename
        # TODO: handle unknow filename
        filename = util.recv().decode('ascii')

        cmd = util.recv().decode('ascii')
        if cmd != SETUP:
            self.terminate()
            return

        util.send(OK)

        # Start video capture
        self.vs = VideoStream(filename)
        
        while True:
            cmd = util.recv().decode('ascii')
            if cmd == EXIT:
                self.terminate()
                return
            elif cmd == PLAY:
                self.streamer = threading.Thread(target=self.start_streaming, args=())
                self.streamer.start()
            elif cmd == HEARTBEAT:
                # TODO: handle if no HEARTBEAT received for long
                pass
            if self.completed:
                self.terminate()
                return
    
    # data socket
    def start_streaming(self):
        self.streaming = True
        print('Started streaming...', self.addr)
        while self.streaming:
            data = self.vs.read()
            if data == None:
                print("Finished streaming...", self.addr)
                self.streaming = False
                break
            try:
                self.data_sock.sendall(data)
            except Exception as e:
                print('Client closed...')
                self.streaming = False
                self.completed = True
                break
            self.fnbr += 1
            print(f'Sent frame {self.fnbr}', end='\r')
        self.data_sock.close()

    def attach_data_sock(self, sock):
        self.data_sock = sock