コード例 #1
0
    def __process_ex_data(cls, original_pkl_path, root_path, pkl_file_name):
        data_frame = DataFrameFunction.get_data_frame_from_pkl(
            original_pkl_path)
        data_frame['company'] = cls.COMPANY_NAME

        # DateとTimeで分割されているので結合した項目を作る。
        DataFrameFunction.generate_data_time_field(data_frame)
        data_frame.set_index('date_time')

        # 2,500みたいなデータがあるので取り除く。
        data_frame['demand'] = data_frame['demand'].astype(str).str.replace(
            ',', '').astype(int)
        data_frame['total_supply_capacity'] = data_frame[
            'total_supply_capacity'].astype(str).str.replace(',',
                                                             '').astype(int)

        # 後続で計算できないのでfloatに変換している。
        data_frame['thermal'] = data_frame['thermal'].astype(str).str.replace(
            ',', '').astype(float)

        # 他の電力に合わせて万kwからMWhに揃える。
        DataFrameFunction.to_mwh(data_frame)

        processed_pkl_path = FileFunction.get_processed_pkl_path(
            root_path, cls.COMPANY_NAME, pkl_file_name)
        FileFunction.create_pkl_file(processed_pkl_path, data_frame)

        return processed_pkl_path
コード例 #2
0
    def __process_ex_data(cls, original_pkl_path, root_path, pkl_file_name):
        data_frame = DataFrameFunction.get_data_frame_from_pkl(
            original_pkl_path)
        data_frame['company'] = cls.COMPANY_NAME

        # DateとTimeで分割されているので結合した項目を作る。
        DataFrameFunction.generate_data_time_field(data_frame)
        data_frame.set_index('date_time')

        # TOTAL算出 Total Supply Capacity
        data_frame[
            'total_supply_capacity'] = DataFrameFunction.get_total_supply_capacity(
                data_frame)

        # 後続で計算できないのでfloatに変換している。
        data_frame['solar_output_control'] = data_frame[
            'solar_output_control'].astype(str).str.replace(',', '')
        data_frame['solar_output_control'] = data_frame[
            'solar_output_control'].astype(str).str.replace('−', '0')
        data_frame['solar_output_control'] = data_frame[
            'solar_output_control'].astype(float)
        data_frame['wind_output_control'] = data_frame[
            'wind_output_control'].astype(str).str.replace(',', '')
        data_frame['wind_output_control'] = data_frame[
            'wind_output_control'].astype(str).str.replace('−', '0')
        data_frame['wind_output_control'] = data_frame[
            'wind_output_control'].astype(float)

        processed_pkl_path = FileFunction.get_processed_pkl_path(
            root_path, cls.COMPANY_NAME, pkl_file_name)
        FileFunction.create_pkl_file(processed_pkl_path, data_frame)

        return processed_pkl_path
コード例 #3
0
    def __process_ex_data(cls, original_pkl_path, root_path, pkl_file_name):
        data_frame = DataFrameFunction.get_data_frame_from_pkl(
            original_pkl_path)
        data_frame['company'] = cls.COMPANY_NAME

        # DateとTimeで分割されているので結合した項目を作る。
        DataFrameFunction.generate_data_time_field(data_frame)
        processed_pkl_path = FileFunction.get_processed_pkl_path(
            root_path, cls.COMPANY_NAME, pkl_file_name)
        FileFunction.create_pkl_file(processed_pkl_path, data_frame)

        return processed_pkl_path
コード例 #4
0
ファイル: tohokuepco.py プロジェクト: TsJazz27Sumin/vedas
    def __process_ex_data(cls, original_pkl_path, root_path, pkl_file_name):
        data_frame = DataFrameFunction.get_data_frame_from_pkl(original_pkl_path)
        data_frame['company'] = cls.COMPANY_NAME

        # tohokuepcoは、日時で持っているのでTepcoに合わせて分割する。
        DataFrameFunction.create_date_and_time_from_datetime(data_frame)

        # Date型に変換しておく。
        data_frame['date_time'] = pandas.to_datetime(data_frame['date_time'], format='%Y/%m/%d %H:%M')

        # TOTAL算出 Total Supply Capacity
        data_frame['total_supply_capacity'] = DataFrameFunction.get_total_supply_capacity(data_frame)

        processed_pkl_path = FileFunction.get_processed_pkl_path(root_path, cls.COMPANY_NAME, pkl_file_name)
        FileFunction.create_pkl_file(processed_pkl_path, data_frame)

        return processed_pkl_path
コード例 #5
0
    def __process_ex_data(cls, original_pkl_path, root_path, pkl_file_name):
        data_frame = DataFrameFunction.get_data_frame_from_pkl(original_pkl_path)
        data_frame['company'] = cls.COMPANY_NAME

        # DateとTimeで分割されているので結合した項目を作る。
        DataFrameFunction.generate_data_time_field(data_frame)
        data_frame.set_index('date_time')

        # 沖縄にない電力項目は0で埋める。
        data_frame['nuclear'] = 0
        data_frame['geothermal'] = 0
        data_frame['pumping'] = 0
        data_frame['interconnection'] = 0

        processed_pkl_path = FileFunction.get_processed_pkl_path(root_path, cls.COMPANY_NAME, pkl_file_name)
        FileFunction.create_pkl_file(processed_pkl_path, data_frame)

        return processed_pkl_path
コード例 #6
0
ファイル: chuden.py プロジェクト: TsJazz27Sumin/vedas
    def __process_ex_data(cls, original_pkl_path, root_path, pkl_file_name):
        data_frame = DataFrameFunction.get_data_frame_from_pkl(
            original_pkl_path)
        data_frame['company'] = cls.COMPANY_NAME

        # DateとTimeで分割されているので結合した項目を作る。
        DataFrameFunction.generate_data_time_field(data_frame)
        data_frame.set_index('date_time')

        # TOTAL算出 Total Supply Capacity
        data_frame[
            'total_supply_capacity'] = DataFrameFunction.get_total_supply_capacity(
                data_frame)

        processed_pkl_path = FileFunction.get_processed_pkl_path(
            root_path, cls.COMPANY_NAME, pkl_file_name)
        FileFunction.create_pkl_file(processed_pkl_path, data_frame)

        return processed_pkl_path
コード例 #7
0
    def __process_ex_data(cls, original_pkl_path, root_path, pkl_file_name):
        data_frame = DataFrameFunction.get_data_frame_from_pkl(
            original_pkl_path)
        data_frame['company'] = cls.COMPANY_NAME

        # DateとTimeで分割されているので結合した項目を作る。
        DataFrameFunction.generate_data_time_field(data_frame)
        data_frame.set_index('date_time')

        # 後続で計算できないのでfloatに変換している。
        # 地熱がハイフンなので0扱いにする。
        data_frame['geothermal'] = data_frame['geothermal'].astype(
            str).str.replace('-', '0').astype(float)

        # 他の電力に合わせて万kwからMWhに揃える。
        DataFrameFunction.to_mwh(data_frame)

        processed_pkl_path = FileFunction.get_processed_pkl_path(
            root_path, cls.COMPANY_NAME, pkl_file_name)
        FileFunction.create_pkl_file(processed_pkl_path, data_frame)

        return processed_pkl_path
コード例 #8
0
ファイル: kyuden.py プロジェクト: TsJazz27Sumin/vedas
    def __process_ex_data(cls, original_pkl_path, root_path, pkl_file_name):
        data_frame = DataFrameFunction.get_data_frame_from_pkl(original_pkl_path)
        data_frame['company'] = cls.COMPANY_NAME

        # Kyudenは、日時で持っているのでTepcoに合わせて分割する。
        DataFrameFunction.create_date_and_time_from_datetime(data_frame)

        # 2,500みたいなデータがあるので取り除く。
        data_frame['demand'] = data_frame['demand'].astype(str).str.replace(',', '').astype(float)

        # 後続で計算できないのでfloatに変換している。
        data_frame['nuclear'] = data_frame['nuclear'].astype(str).str.replace(',', '').astype(float)
        data_frame['thermal'] = data_frame['thermal'].astype(str).str.replace(',', '').astype(float)
        data_frame['solar_output_control'] = data_frame['solar_output_control'].astype(str).str.replace('None', '0')
        data_frame['solar_output_control'] = data_frame['solar_output_control'].str.replace('nan', '0')
        data_frame['solar_output_control'] = data_frame['solar_output_control'].str.replace(',', '')
        data_frame['solar_output_control'] = data_frame['solar_output_control'].astype(float)
        data_frame['pumping'] = data_frame['pumping'].astype(str).str.replace('None', '0')
        data_frame['pumping'] = data_frame['pumping'].str.replace('nan', '0')
        data_frame['pumping'] = data_frame['pumping'].str.replace(',', '')
        data_frame['pumping'] = data_frame['pumping'].astype(float)
        data_frame['interconnection'] = data_frame['interconnection'].astype(str).str.replace('None', '0')
        data_frame['interconnection'] = data_frame['interconnection'].str.replace('nan', '0')
        data_frame['interconnection'] = data_frame['interconnection'].str.replace(',', '')
        data_frame['interconnection'] = data_frame['interconnection'].astype(float)

        # Date型に変換しておく。
        data_frame['date_time'] = pandas.to_datetime(data_frame['date_time'], format='%Y/%m/%d %H:%M')

        # TOTAL算出 Total Supply Capacity
        data_frame['total_supply_capacity'] = DataFrameFunction.get_total_supply_capacity(data_frame)

        processed_pkl_path = FileFunction.get_processed_pkl_path(root_path, cls.COMPANY_NAME, pkl_file_name)
        FileFunction.create_pkl_file(processed_pkl_path, data_frame)

        return processed_pkl_path