コード例 #1
0
    #feature_tracker = feature_tracker_factory(min_num_features=num_features, detector_type = FeatureDetectorTypes.AKAZE, descriptor_type = FeatureDescriptorTypes.AKAZE, tracker_type = tracker_type)
    #feature_tracker = feature_tracker_factory(min_num_features=num_features, detector_type = FeatureDetectorTypes.SIFT, descriptor_type = FeatureDescriptorTypes.SIFT, tracker_type = tracker_type)
    #feature_tracker = feature_tracker_factory(min_num_features=num_features, detector_type = FeatureDetectorTypes.SURF, descriptor_type = FeatureDescriptorTypes.SURF, tracker_type = tracker_type)

    # create visual odometry object
    vo = VisualOdometry(cam, grountruth, feature_tracker)

    is_draw_traj_img = True
    traj_img_size = 800
    traj_img = np.zeros((traj_img_size, traj_img_size, 3), dtype=np.uint8)
    half_traj_img_size = int(0.5 * traj_img_size)
    draw_scale = 1

    is_draw_3d = True
    if use_pangolin:
        display = Viewer3D()
    else:
        plt3d = Mplot3d(title='3D trajectory')

    is_draw_err = True
    err_plt = Mplot2d(xlabel='img id', ylabel='m', title='error')

    is_draw_matched_points = True
    matched_points_plt = Mplot2d(xlabel='img id',
                                 ylabel='# matches',
                                 title='# matches')

    img_id = 0
    while dataset.isOk():

        img = dataset.getImage(img_id)
コード例 #2
0
    tracker_config['num_features'] = num_features
    
    feature_tracker = feature_tracker_factory(**tracker_config)

    # create visual odometry object 
    vo = VisualOdometry(cam, groundtruth, feature_tracker)

    is_draw_traj_img = True
    traj_img_size = 800
    traj_img = np.zeros((traj_img_size, traj_img_size, 3), dtype=np.uint8)
    half_traj_img_size = int(0.5*traj_img_size)
    draw_scale = 1

    is_draw_3d = True
    if kUsePangolin:
        viewer3D = Viewer3D()
    else:
        plt3d = Mplot3d(title='3D trajectory')

    is_draw_err = True 
    err_plt = Mplot2d(xlabel='img id', ylabel='m',title='error')

    is_draw_matched_points = True 
    matched_points_plt = Mplot2d(xlabel='img id', ylabel='# matches',title='# matches')

    img_id = 0
    while dataset.isOk():

        img = dataset.getImage(img_id)

        if img is not None:
コード例 #3
0
ファイル: show_map.py プロジェクト: PatrykMazurek/Robotics
import numpy as np
import os, cv2, json, math, time
import OpenGL.GL as gl
from scipy.cluster.hierarchy import ward, fcluster
from scipy.spatial.distance import pdist

# this file present date from json file and csv file o nterh map 3D
# and calculate the position of opints using DBSCAN and present in map
import viewer3D
from viewer3D import Viewer3D

viewer = Viewer3D()


def convert_to_array(s):
    tab = []
    t = s.split(' ')
    for a in t:
        if a != "":
            tab.append(a)
    return tab


def get_data_from_file(file_number):

    json_file, csv_file = False, False

    # check if json file exist
    # if os.path.exists('data/object_in_'+str(file_number)+'.json'):
    #     # read the object and position in image form file
    #     json_file = True