コード例 #1
0
def load_subvolume_and_split_in_blocks(path_to_gt,save_path_blocks,prefix="prefix"):


    dict_blocks = {
        "block1": "x_5000_5520_y_2000_2520_z_3000_3520",
        "block2": "x_5000_5520_y_2000_2520_z_3480_4000",
        "block3": "x_5000_5520_y_2480_3000_z_3000_3520",
        "block4": "x_5480_6000_y_2000_2520_z_3000_3520",
        "block5": "x_5480_6000_y_2480_3000_z_3000_3520",
        "block6": "x_5480_6000_y_2000_2520_z_3480_4000",
        "block7": "x_5000_5520_y_2480_3000_z_3480_4000",
        "block8": "x_5480_6000_y_2480_3000_z_3480_4000",
    }



    # subvolume = readHDF5(path_to_subvolume, "data")


    for key in dict_blocks.keys():
        name = dict_blocks[key]

        with h5py.File(path_to_gt) as f:
            subvolume = f["segmentation"][int(name[2:6]):int(name[7:11]),
                    int(name[14:18]):int(name[19:23]),
                    int(name[26:30]):int(name[31:35])]


            labeled_volume=vigra.analysis.labelVolume(subvolume.astype("uint32"))

            writeHDF5(labeled_volume, save_path_blocks + prefix + key + ".h5", "data",compression="gzip")
コード例 #2
0
ファイル: deploy.py プロジェクト: abailoni/greedy_CNN
def savedata(data, path):
    """
    Saves volume as a .tiff or .h5 file in path.

    :type data: numpy.ndarray
    :param data: Volume to be saved.

    :type path: str
    :param path: Path to the file where the volume is to be saved. Must end with .tiff or .h5.
    """
    if path.endswith(".tiff") or path.endswith('.tif'):
        try:
            from vigra.impex import writeVolume
        except ImportError:
            raise ImportError("Vigra is needed to read/write TIFF volumes, but could not be imported.")

        writeVolume(data, path, '', dtype='UINT8')

    elif path.endswith(".h5"):
        try:
            from vigra.impex import writeHDF5
            vigra_available = True
        except ImportError:
            vigra_available = False
            import h5py

        if vigra_available:
            writeHDF5(data, path, "/data")
        else:
            with h5py.File(path, mode='w') as hf:
                hf.create_dataset(name='data', data=data)

    else:
        raise NotImplementedError("Can't save: unsupported format. Supported formats are .tiff and .h5")
コード例 #3
0
def distribute_folders(path, prefix,new_path,new_name):
    block_files = os.listdir(path)

    for file in block_files:
        number = file[len(prefix):-3]

        block=readHDF5(path+file,"data" )
        writeHDF5(block,new_path+"block{}/".format(number)+ new_name,"data" )
コード例 #4
0
ファイル: exp.py プロジェクト: PeterJackNaylor/Xb_screen
 def _saveResult(self):
     self.track_result = np.array(self.track_result, dtype=self.TRACK_DTYPE)
     path = self.TRACKING_PATH_NAME.format(self.plate, self.well)
     try:
         vi.writeHDF5(self.track_result, self.ch5_file, path)
     except Exception as e:
         raise e
     return 1
コード例 #5
0
def relabelcons(path,new_path):
    files_list=os.listdir(path)

    for file in files_list:

        block=readHDF5(path+file,"data" )
        block=block.astype("uint32")
        labeled_volume,_,_ = vigra.analysis.relabelConsecutive(block)
        writeHDF5(labeled_volume,new_path+file,"data",compression="gzip")
コード例 #6
0
def rerun_connected_compts_in_folders(path,file_name,new_file_name):


    for i in [1]:

        print i
        block=readHDF5(path+"block{}/".format(i)+file_name,"data" )
        block=block.astype("uint32")
        labeled_volume = vigra.analysis.labelVolume(block)
        writeHDF5(labeled_volume,path+"block{}/".format(i)+new_file_name,"data",compression="gzip")
コード例 #7
0
def save_comp(path,save_path):
    files = os.listdir(path)

    print files

    for i,file in enumerate(files):

        print file

        block = readHDF5(path + file, "data")
        writeHDF5(block,save_path + file, "data", compression="gzip")
コード例 #8
0
def rerun_connected_compts(path,new_path):

    block_files = os.listdir(path)

    print block_files
    for file in block_files:

        print file

        block=readHDF5(path+file,"data" )
        block=block.astype("uint32")
        labeled_volume = vigra.analysis.relabelVolume(block)
        writeHDF5(labeled_volume,new_path+file,"data",compression="gzip")
コード例 #9
0
ファイル: test_impex.py プロジェクト: zgsxwsdxg/vigra
def test_writeAndReadVolumeHDF5():
    try:
        import h5py
    except:
        return
    
    # positive tests
    # write and read volume
    im.writeHDF5(volume256, "hdf5test.hd5", "group/subgroup/voldata")
    volume256_imp = im.readHDF5("hdf5test.hd5", "group/subgroup/voldata")
    checkEqualData(volume256,volume256_imp)
    # write and read binary volume
    im.writeHDF5(volumeFloat, "hdf5test.hd5", "group/subgroup/voldata")
    volumeFloat_imp = im.readHDF5("hdf5test.hd5", "group/subgroup/voldata")
    checkEqualData(volumeFloat.transposeToDefaultOrder(), volumeFloat_imp)
    # write multiple sets and check if they are all there afterwards
    im.writeHDF5(volume256, "hdf5test.hd5", "group/subgroup/voldata")
    im.writeHDF5(volume256, "hdf5test.hd5", "group/subgroup/voldata2")
    volume256_imp1 = im.readHDF5("hdf5test.hd5", "group/subgroup/voldata")
    volume256_imp1 = volume256_imp1.dropChannelAxis()
    volume256_imp2 = im.readHDF5("hdf5test.hd5", "group/subgroup/voldata2")
    volume256_imp2 = volume256_imp2.dropChannelAxis()
    checkEqualData(volume256,volume256_imp1)
    checkEqualData(volume256,volume256_imp2)

    # negative tests
    # write and read volume
    volume256_imp[1,1,1] = 100000
    checkUnequalData(volume256,volume256_imp)
    # write and read binary volume
    volumeFloat_imp[1,1,1] = 100000
    checkUnequalData(volumeFloat.transposeToDefaultOrder(), volumeFloat_imp)
コード例 #10
0
ファイル: test_impex.py プロジェクト: zgsxwsdxg/vigra
def test_writeAndReadImageHDF5():
    try:
        import h5py
    except:
        print("Warning: 'import h5py' failed, not executing HDF5 import/export tests")
        return
    
    # positive tests
    # write and read image
    im.writeHDF5(image, "hdf5test.hd5", "group/subgroup/imgdata")
    image_imp = im.readHDF5("hdf5test.hd5", "group/subgroup/imgdata")
    checkEqualData(image,image_imp)
    # write and read scalar image
    im.writeHDF5(scalar_image, "hdf5test.hd5", "group/subgroup/imgdata")
    scalar_image_imp = im.readHDF5("hdf5test.hd5", "group/subgroup/imgdata")
    scalar_image_imp = scalar_image_imp.dropChannelAxis()
    checkEqualData(scalar_image,scalar_image_imp)
    # write multiple sets and check if they are all there afterwards
    im.writeHDF5(image, "hdf5test.hd5", "group/subgroup/imgdata")
    im.writeHDF5(image, "hdf5test.hd5", "group/subgroup/imgdata2")
    image_imp1 = im.readHDF5("hdf5test.hd5", "group/subgroup/imgdata")
    image_imp2 = im.readHDF5("hdf5test.hd5", "group/subgroup/imgdata2")
    checkEqualData(image,image_imp1)
    checkEqualData(image,image_imp2)

    # negative tests
    # write and read image
    image_imp[1,1,1] = 100000
    checkUnequalData(image,image_imp)
    # write and read scalar image
    scalar_image_imp[1,1] = 100000
    checkUnequalData(scalar_image,scalar_image_imp)
コード例 #11
0
def compute_names_of_results_in_folders(path,new_path,name,new_name):

    dict_blocks={
    "block1": "x_5000_5520_y_2000_2520_z_3000_3520",
    "block2": "x_5000_5520_y_2000_2520_z_3480_4000",
    "block3": "x_5000_5520_y_2480_3000_z_3000_3520",
    "block4": "x_5480_6000_y_2000_2520_z_3000_3520",
    "block5": "x_5480_6000_y_2480_3000_z_3000_3520",
    "block6": "x_5480_6000_y_2000_2520_z_3480_4000",
    "block7": "x_5000_5520_y_2480_3000_z_3480_4000",
    "block8": "x_5480_6000_y_2480_3000_z_3480_4000",
    }

    for key in dict_blocks.keys():

            block = readHDF5(path + key +"/" + name +".h5", "data")
            writeHDF5(block, new_path + new_name + "_" + dict_blocks[key]+ ".h5", "data",compression="gzip")
コード例 #12
0
def compute_names(path,new_path,prefix_old,prefix_new):

    dict_blocks={
    "1": "x_5000_5520_y_2000_2520_z_3000_3520",
    "2": "x_5000_5520_y_2000_2520_z_3480_4000",
    "3": "x_5000_5520_y_2480_3000_z_3000_3520",
    "4": "x_5480_6000_y_2000_2520_z_3000_3520",
    "5": "x_5480_6000_y_2480_3000_z_3000_3520",
    "6": "x_5480_6000_y_2000_2520_z_3480_4000",
    "7": "x_5000_5520_y_2480_3000_z_3480_4000",
    "8": "x_5480_6000_y_2480_3000_z_3480_4000",
    }

    for key in dict_blocks.keys():

            block = readHDF5(path + prefix_old + key + ".h5", "data")
            writeHDF5(block, new_path + prefix_new + dict_blocks[key]+ ".h5", "data",compression="gzip")
コード例 #13
0
def load_big_cut_out_subvolume(path,save_path,boundaries=np.s_[5000:6000,2000:3000,3000:4000],relabel=False):

    with h5py.File(path) as f:
        subvolume = f["data"][boundaries]

    print "loading from",path

    if relabel:
        labeled_volume = vigra.analysis.labelVolume(subvolume.astype("uint32"))
        print "--> RELABELED"
        print "saving subvolume to", save_path

        writeHDF5(labeled_volume,save_path,"data",compression="gzip")

    else:
        print "saving subvolume to", save_path

        writeHDF5(subvolume,save_path,"data",compression="gzip")
コード例 #14
0
def compute_real_names_for_blocks(path_to_res,resolved=False):

    dict_blocks = {
        "block1": "x_5000_5520_y_2000_2520_z_3000_3520",
        "block2": "x_5000_5520_y_2000_2520_z_3480_4000",
        "block3": "x_5000_5520_y_2480_3000_z_3000_3520",
        "block4": "x_5480_6000_y_2000_2520_z_3000_3520",
        "block5": "x_5480_6000_y_2480_3000_z_3000_3520",
        "block6": "x_5480_6000_y_2000_2520_z_3480_4000",
        "block7": "x_5000_5520_y_2480_3000_z_3480_4000",
        "block8": "x_5480_6000_y_2480_3000_z_3480_4000",
    }
    for key in dict_blocks.keys():

        if resolved==True:
            block = readHDF5(path_to_res + key + "/result_resolved.h5", "data")
            writeHDF5(block, path_to_res + "finished_renamed/" + "result_resolved_"+dict_blocks[key]+".h5", "data")


        else:
            block=readHDF5(path_to_res+key+"/result.h5","data")
            writeHDF5(block, path_to_res + "finished_renamed/" + "result_"+dict_blocks[key]+".h5", "data")
コード例 #15
0
def savedata(data, path):
    """
    Saves volume as a .tiff or .h5 file in path.

    :type data: numpy.ndarray
    :param data: Volume to be saved.

    :type path: str
    :param path: Path to the file where the volume is to be saved. Must end with .tiff or .h5.
    """
    if path.endswith(".tiff") or path.endswith('.tif'):
        try:
            from vigra.impex import writeVolume
        except ImportError:
            raise ImportError(
                "Vigra is needed to read/write TIFF volumes, but could not be imported."
            )

        writeVolume(data, path, '', dtype='UINT8')

    elif path.endswith(".h5"):
        try:
            from vigra.impex import writeHDF5
            vigra_available = True
        except ImportError:
            vigra_available = False
            import h5py

        if vigra_available:
            writeHDF5(data, path, "/data")
        else:
            with h5py.File(path, mode='w') as hf:
                hf.create_dataset(name='data', data=data)

    else:
        raise NotImplementedError(
            "Can't save: unsupported format. Supported formats are .tiff and .h5"
        )
コード例 #16
0
def load_train_subvolume_and_split_in_blocks(path, save_path_blocks,new_prefix="new_prefix_",relabel=False):
    """
    4000:5000, 2000:3000, 4000:4500
    """


    train_blocks = {
        "fm_train_block1": "x_4000_4500_y_2000_2500_z_4000_4500",
        "fm_train_block2": "x_4000_4500_y_2500_3000_z_4000_4500",
        "fm_train_block3": "x_4500_5000_y_2000_2500_z_4000_4500",
        "fm_train_block4": "x_4500_5000_y_2500_3000_z_4000_4500",
    }

    new_path=os.path.join(save_path_blocks,new_prefix[:-1])

    if not os.path.exists(new_path):
        os.mkdir(new_path)

    for key in train_blocks.keys():

        name = train_blocks[key]
        print new_prefix+key
        with h5py.File(path) as f:
            subvolume = f["data"][int(name[2:6]):int(name[7:11]),
                        int(name[14:18]):int(name[19:23]),
                        int(name[26:30]):int(name[31:35])]

            if relabel:

                labeled_volume = vigra.analysis.labelVolume(subvolume.astype("uint32"))
                print "-->RELABELED"
                writeHDF5(labeled_volume, new_path + "/" + new_prefix + key + ".h5", "data", compression="gzip")

            else:

                writeHDF5(subvolume, new_path + "/" + new_prefix + key + ".h5", "data", compression="gzip")
コード例 #17
0
def ecrireTraining(ensembleTraj, fileToSave, LENGTH):
    solutions = {}
    fileS=open(fileToSave, "w")
    fileSHDF5 = fileToSave[:-3]+"hdf5"

    going = {}
    coming = {}
    appearCandidates = {}
    disappearCandidates = {}

    for trajectoire in ensembleTraj.lstTraj:
        frameLabels = sorted(trajectoire.lstPoints.iterkeys())
        lastLabels = []
        lastFrame = -1
        lastMoveSplit = [False for x in range(100)]

        for f in frameLabels:
            frame = int(f[0])
            nextFrame = frame+1

            if nextFrame==LENGTH:
                break

            if lastLabels == []:
                lastLabels=trajectoire.findFrame(frame)

            if frame == lastFrame:
                continue

            nextLabels = trajectoire.findFrame(nextFrame)

            if not frame in solutions:
                solutions[frame]={}

            l = len(lastLabels)
            nextL = len(nextLabels)
            #print "FRAME :"+str(frame),l, nextL, lastLabels, nextLabels, trajectoire.numCellule


            if int(l)==int(nextL):
                if int(l)==1 and int(lastLabels[0])==-1:
                    appearing = nextLabels[0]
                    if not nextFrame in appearCandidates:
                        appearCandidates[nextFrame]=[]
                    appearCandidates[nextFrame].append(appearing)

                elif int(l)==1 and int(nextLabels[0])==-2:
                    disappearing = lastLabels[0]
                    if not frame in disappearCandidates:
                        disappearCandidates[frame]=[]
                    disappearCandidates[frame].append(disappearing)
                    #continue

                elif int(l)==1:
                    #print "MOVE"
                                    
                    if not "move" in solutions[frame]:
                        solutions[frame]["move"]=[[], []]

                    solutions[frame]["move"][0].append(lastLabels)
                    solutions[frame]["move"][1].append(nextLabels)
                    if not nextFrame in coming:
                        coming[nextFrame]=[]
                    for label in nextLabels: 
                        coming[nextFrame].append(label)
                        
                    if not frame in going:
                        going[frame]=[]
                    for label in lastLabels:
                        going[frame].append(label)

                else:
                    print "problem", lastLabels, nextLabels, frame
                    raise

            else:
                print "problem at frame "+str(frame), lastLabels, nextLabels
                raise

            lastFrame = frame
            if not lastMoveSplit[frame]:
                 lastLabels = nextLabels
            if int(lastLabels[0])==-2:
                break
            
#looking at merges : if two cells have the same target, it means it is not a move but a merge

    for f in solutions:
        if "move" not in solutions[f]:
            continue
        
        listeLabelsTargetMove = solutions[f]["move"][1]
        listeLabelsSourceMove = solutions[f]["move"][0]
        nextFrame = int(f+1)
        #print listeLabelsSourceMove, listeLabelsTargetMove
        
        newSourceMove = []
        newTargetMove = []
        
        merges = []
        moves = []
        for t_el in listeLabelsTargetMove:
            if listeLabelsTargetMove.count(t_el) > 1:
                merges.append(t_el)
            else:
                moves.append(t_el)

        indexToDel = []
        for label1 in merges:
          #  print label1
            nextLabels=label1
            lastLabels=[]
            for i in range(len(listeLabelsTargetMove)):
                if listeLabelsTargetMove[i]==label1:
                    lastLabels.append(listeLabelsSourceMove[i][0])
                    indexToDel.append(i)
#                    

            if not "merge" in solutions[f]:
                solutions[f]["merge"]=[[], []]
            if nextLabels in solutions[f]["merge"][1]:
                continue
            solutions[f]["merge"][0].append(lastLabels)
            solutions[f]["merge"][1].append(nextLabels)

            if not f in going:
                going[f]=[]
            if not nextFrame in coming:
                coming[nextFrame]=[]
            for label in nextLabels:
                coming[nextFrame].append(label)
            for label in lastLabels:
                going[f].append(label)
        
#looking at splits : if two cells have the same source, it means it is not a move but a split
        
        splits = []
        moves = []
        for s_el in listeLabelsSourceMove:
            if listeLabelsSourceMove.count(s_el) > 1:
                splits.append(s_el)
            else:
                moves.append(s_el)
        
#        indexToDel = []
        for label1 in splits:
            #print label1
            lastLabels=label1
            nextLabels=[]
            for i in range(len(listeLabelsSourceMove)):
                if listeLabelsSourceMove[i]==label1:
                    indexToDel.append(i)
                    nextLabels.append(listeLabelsTargetMove[i][0])
#                    
            if not "split" in solutions[f]:
                solutions[f]["split"]=[[], []]
            if lastLabels in solutions[f]["split"][0]:
                continue
            solutions[f]["split"][0].append(lastLabels)
            solutions[f]["split"][1].append(nextLabels)

            if not f in going:
                going[f]=[]
            if not nextFrame in coming:
                coming[nextFrame]=[]
            for label in nextLabels:
                coming[nextFrame].append(label)
            for label in lastLabels:
                going[f].append(label)
                
        for i in range(len(listeLabelsSourceMove)):
            if i not in indexToDel:
                newSourceMove.append(listeLabelsSourceMove[i])
                newTargetMove.append(listeLabelsTargetMove[i])
 #       print listeLabelsSourceMove, listeLabelsTargetMove
        #print newSourceMove, newTargetMove
        solutions[f]["move"][1] = newTargetMove
        solutions[f]["move"][0] = newSourceMove
        
                                           

#appear candidates 
    for frame in appearCandidates.keys():
        appearlist = appearCandidates[frame]
        for label in appearlist:
            if frame not in coming.keys() or (frame in coming.keys() and label not in coming[frame]):
                print "APPEAR "+str(label)+" on frame "+str(frame)
                if not "appear" in solutions[frame-1]:
                    solutions[frame-1]["appear"]=[[], []]

                solutions[frame-1]["appear"][0].append([-1])
                solutions[frame-1]["appear"][1].append(label)

#disappear candidates
    for frame in disappearCandidates.keys():
        disappearlist = disappearCandidates[frame]
        for label in disappearlist:
            if frame not in going.keys() or (frame in going.keys() and label not in going[frame]):
                print "DISAPPEAR "+str(label)+" on frame "+str(frame)

                if not "disappear" in solutions[frame]:
                    solutions[frame]["disappear"]=[[], []]

                solutions[frame]["disappear"][0].append(label)
                solutions[frame]["disappear"][1].append([])

    count={}
    out_merge = "\n MERGE \n"
    out_split = "\n SPLIT \n"
    for e in EVENTS:
        count[e]=0

    for f in solutions:
        fileS.write("\n --------------------------FRAME "+str(f)+"------------------------------------")
        for e in solutions[f]:
            s = len(solutions[f][e][0])
#attention a l'ordre des axes : ici cx=nombre d'evenements, "taille" de l'evenement marche bien (de toutes facons lorsqu'on appelle la fonction writeHDF5 elle retablit l'ordre numpy)
            shapeS = (s,EVENTSSIZE[e][0],)
            shapeT = (s,EVENTSSIZE[e][1],)

            tabSource = v.VigraArray(shapeS,n.int32, axistags = v.VigraArray.defaultAxistags('cx'), init=True)
            tabTarget = v.VigraArray(shapeT,n.int32, axistags = v.VigraArray.defaultAxistags('cx'), init=True)
            tabSource = tabSource-1
            tabTarget = tabTarget-1
            path = "Training/{:0>6}/{}/".format(f, e)
            pathSource = path+"Source"
            pathTarget = path+"Target"
            
            fileS.write("\n EVENT "+str(e)+"*******\n SOURCES :\n")
            j=0
            for label in solutions[f][e][0]:
                if isinstance(label, int) or isinstance(label, n.uint16) :
                    length = 1
                else:
                    length=int(len(label))
                fileS.write("\n label"+str(label))

                if label == []:
                    continue

                diff = EVENTSSIZE[e][0] - length
                if diff==0:
                    tabSource[j]=label
                else:
                    while diff>0:
                        try:
                            label.append(-1)
                        except AttributeError:
                            print "evenement "+str(e)+" probleme de taille entre evenement"+str(EVENTSSIZE[e][0])+" et le training set "+str(length)
                        else:
                            diff-=1
                            
                    tabSource[j]=label

#                if e == "split":print e, f, label, j, tabSource
                j+=1
                count[e]+=1
            i=0
            fileS.write("\n TARGETS :\n")
            for label in solutions[f][e][1]:
                if isinstance(label, int) or isinstance(label, n.uint16) :
                    length = 1
                else:
                    length=int(len(label))
                fileS.write("\n label"+str(label))
                
                diff = EVENTSSIZE[e][1] - length
                if diff==0:
                    tabTarget[i]=label
                else:
                    while diff>0:
                        try:
                            label.append(-1)
                        except AttributeError:
                            print "evenement "+str(e)+" probleme de taille entre evenement"+str(EVENTSSIZE[e][1])+" et le training set "+str(length)
                        else:
                            diff-=1
                    tabTarget[i]=label

                i+=1

            if i<>j: print "probleme : difference de longueurs entre Source et Target at fr "+str(f)+" pour l'evenement "+e

            vi.writeHDF5(tabSource, fileSHDF5, pathSource)
            vi.writeHDF5(tabTarget, fileSHDF5, pathTarget)
            
            if e =="merge":
                out_merge +="\n"+str(solutions[f][e][0])+" on frame "+str(f)+" to "+str(solutions[f][e][1])
            if e=="split":
                out_split +="\n"+str(solutions[f][e][0])+" on frame "+str(f)+" to "+str(solutions[f][e][1])
    print count, out_merge, out_split
    fileS.close()
    return solutions