def insert_in_annetto_netwr(self): rdfWrapper.new_named_individual(self.name) rdfWrapper.new_type(self.name, self.type) temp_dict_layer=self.layer.copy() for elem in temp_dict_layer.keys(): for elem_out in self.output_layer: if elem_out.name==elem and elem in self.layer.keys(): del self.layer[elem] for layer_name in self.layer.keys(): self.layer[layer_name].insert_in_annetto() rdfWrapper.new_network_has_layer(self.name, layer_name) if self.objective!="": for objective_name in self.objective.keys(): self.objective[objective_name].insert_in_annetto() rdfWrapper.new_network_has_objective(self.name, objective_name) for elem in self.input_layer: elem.insert_in_annetto() rdfWrapper.new_input_layer(self.name,elem.name) out_inserted=[] for elem in self.output_layer: if elem.name not in out_inserted: out_inserted.append(elem.name) elem.insert_in_annetto() rdfWrapper.new_output_layer(self.name,elem.name) for elem in self.hang_dp: elem.insert_in_annetto()
def insert_in_annetto(self): #print("Annetto::TrainingStrategy-",self.name) rdfWrapper.new_named_individual(self.name) rdfWrapper.new_type(self.name, self.type) self.training_model.insert_in_annetto() for session in self.primary_training_session: session.insert_in_annetto() #TODO:FIND WHICH ONE IS FIRST rdfWrapper.new_has_prim_tr_session(self.name, session.name) rdfWrapper.new_trained_model(self.name, self.training_model.name)
def insert_in_annetto(self): rdfWrapper.new_named_individual(self.name) rdfWrapper.new_type(self.name, self.type) self.hasStopCondition.insert_in_annetto() rdfWrapper.new_has_stop_cond(self.name, self.hasStopCondition.name) self.primaryLoop.insert_in_annetto() if self.primaryLoop != "": rdfWrapper.new_has_primary_loop(self.name, self.primaryLoop.name) else: print("LOGGING:There is no primary loop.") for lstep in self.loopSteps: lstep.insert_in_annetto() rdfWrapper.new_has_looping_step(self.name, lstep.name)
def insert_in_annetto(self): rdfWrapper.new_named_individual(self.name) rdfWrapper.new_type(self.name, self.type) for network in nodes.handler.entitiesHandler.data.annConfiguration.networks.keys( ): network_node = nodes.handler.entitiesHandler.data.annConfiguration.networks[ network] network_node.insert_in_annetto_netwr() rdfWrapper.new_network(self.name, network) for trStrategy in nodes.handler.entitiesHandler.data.annConfiguration.training_strategy.keys( ): trStrategy_node = nodes.handler.entitiesHandler.data.annConfiguration.training_strategy[ trStrategy] trStrategy_node.insert_in_annetto() rdfWrapper.new_has_training_strategy(self.name, trStrategy)
def insert_in_annetto(self): if self.metric != "": rdfWrapper.new_named_individual(self.name) rdfWrapper.new_type(self.name, self.type) rdfWrapper.new_evaluates_ann_conf(self.name, self.ann_conf.name) for i, _ in enumerate(self.IOPipe): self.IOPipe[i].insert_in_annetto() rdfWrapper.new_evaluates_using_io(self.name, self.IOPipe[i].name) self.metric.insert_in_annetto() rdfWrapper.new_has_metric(self.name, self.metric.name) rdfWrapper.new_evaluates_network(self.name, self.network) rdfWrapper.new_with_tr_strategy(self.name, self.train_strategy.name) else: print("ERROR:Neural network w/o evaluation.")
def insert_in_annetto(self): rdfWrapper.new_named_individual(self.name) rdfWrapper.new_type(self.name, self.type) if self.hasTrainingStep != []: for ind, tr_step in enumerate(self.hasTrainingStep): tr_step.insert_in_annetto() rdfWrapper.new_has_training_step(self.name, tr_step.name) else: print("ERROR:TrainingStep is empty") if self.hasPrimaryTrainingStep != "": self.hasPrimaryTrainingStep.insert_in_annetto() rdfWrapper.new_has_primary_training_step( self.name, self.hasPrimaryTrainingStep.name) else: print("ERROR:PrimaryTrainingStep is empty")
def insert_in_annetto(self): res = rdfWrapper.new_named_individual(self.name) if res == 0: rdfWrapper.new_type(self.name, self.type) rdfWrapper.new_joins_layer(self.name, self.input_layer.name) if self.dataset != "": self.dataset.insert_in_annetto() rdfWrapper.new_joins_dataset(self.name, self.dataset.name)
def insert_in_annetto(self): res = rdfWrapper.new_named_individual(self.name) if res == 0: rdfWrapper.new_type(self.name, self.type) if self.num_layer != "": rdfWrapper.layer_num_units(self.name, self.num_layer) else: print("ERROR:IN OUT W/O NUM LAYER")
def insert_in_annetto(self): ret = rdfWrapper.new_named_individual(self.name) if ret == 0: rdfWrapper.new_type(self.name, self.type) for elem in self.next_layer: rdfWrapper.new_next_layer(self.name, elem) for elem in self.previous_layer: rdfWrapper.new_previous_layer(self.name, elem) if self.sameLayer != "": rdfWrapper.new_same_layer(self.name, self.sameLayer) else: if self.activation != None: self.activation.insert_in_annetto() rdfWrapper.new_has_activation(self.name, self.activation.name) if self.hasBias == True: rdfWrapper.new_has_bias(self.name, self.hasBias) if self.num_layer == "": print("ERROR:" + self.name + " NOT AVAILABLE NUM LAYER") else: rdfWrapper.layer_num_units(self.name, self.num_layer)
def insert_in_annetto(self): rdfWrapper.new_named_individual(self.name) rdfWrapper.new_type(self.name, self.type)
def insert_in_annetto(self): rdfWrapper.new_named_individual(self.name) rdfWrapper.new_type(self.name, self.type) for weight in self.has_weight: weight.insert_in_annetto() rdfWrapper.new_has_weights(self.name,weight.name)
def insert_in_annetto(self): rdfWrapper.new_named_individual(self.name) rdfWrapper.new_type(self.name, self.type) rdfWrapper.new_num_of_iterations(self.name, self.num_of_iterations)
def insert_in_annetto(self): rdfWrapper.new_named_individual(self.name) rdfWrapper.new_type(self.name, self.type) self.cost_function.insert_in_annetto() rdfWrapper.new_has_cost(self.name, self.cost_function.name)
def insert_in_annetto(self): rdfWrapper.new_named_individual(self.name) rdfWrapper.new_type(self.name, self.type) rdfWrapper.new_trained_in_layer(self.name, self.trained_in_layer) rdfWrapper.new_trained_out_layer(self.name, self.trained_out_layer)