コード例 #1
0
def generate_saliceny_map(show=True):
    """Generates a heatmap indicating the pixels that contributed the most towards
    maximizing the filter output. First, the class prediction is determined, then we generate heatmap
    to visualize that class.
    """
    # Build the VGG16 network with ImageNet weights
    model = VGG16(weights='imagenet', include_top=True)
    print('Model loaded.')

    # The name of the layer we want to visualize
    # (see model definition in vggnet.py)
    layer_name = 'predictions'
    layer_idx = [
        idx for idx, layer in enumerate(model.layers)
        if layer.name == layer_name
    ][0]

    for path in ['../resources/ouzel.jpg', '../resources/ouzel_1.jpg']:
        seed_img = utils.load_img(path, target_size=(224, 224))

        # Convert to BGR, create input with batch_size: 1, and predict.
        bgr_img = utils.bgr2rgb(seed_img)
        img_input = np.expand_dims(img_to_array(bgr_img), axis=0)
        pred_class = np.argmax(model.predict(img_input))

        heatmap = visualize_saliency(model, layer_idx, [pred_class], seed_img)
        if show:
            plt.axis('off')
            plt.imshow(heatmap)
            plt.title('Saliency - {}'.format(
                utils.get_imagenet_label(pred_class)))
            plt.show()
コード例 #2
0
def generate_cam(show=True):
    """Generates a heatmap via grad-CAM method.
    First, the class prediction is determined, then we generate heatmap to visualize that class.
    """
    # Build the VGG16 network with ImageNet weights
    model = VGG16(weights='imagenet', include_top=True)
    print('Model loaded.')

    # The name of the layer we want to visualize
    # (see model definition in vggnet.py)
    layer_name = 'predictions'
    layer_idx = [
        idx for idx, layer in enumerate(model.layers)
        if layer.name == layer_name
    ][0]

    for path in [
            'https://upload.wikimedia.org/wikipedia/commons/thumb/1/1c/Tigerwater_edit2.jpg/170px-Tigerwater_edit2.jpg'
    ]:
        seed_img = utils.load_img(path, target_size=(224, 224))

        # Convert to BGR, create input with batch_size: 1, and predict.
        bgr_img = utils.bgr2rgb(seed_img)
        img_input = np.expand_dims(img_to_array(bgr_img), axis=0)
        pred_class = np.argmax(model.predict(img_input))

        heatmap = visualize_cam(model, layer_idx, [pred_class], seed_img)
        if show:
            plt.axis('off')
            plt.imshow(heatmap)
            plt.title('Attention - {}'.format(
                utils.get_imagenet_label(pred_class)))
            plt.show()
コード例 #3
0
def generate_cam_from_image(image, model=None, returnAsImage=True, layer=None):
    """Generates a heatmap via grad-CAM method.
    First, the class prediction is determined, then we generate heatmap to visualize that class.
    """
    # Build the VGG16 network with ImageNet weights
    if model is None:
        model = VGG16(weights='imagenet', include_top=True)
    print('Model loaded.')

    # The name of the layer we want to visualize
    # (see model definition in vggnet.py)
    if layer is None:
        layer_name = 'predictions'
        layer_idx = [
            idx for idx, layer in enumerate(model.layers)
            if layer.name == layer_name
        ][0]
    else:
        layer_idx = layer
    #seed_img = Image.open(image)
    seed_img = Image.fromarray(image)

    seed_img = seed_img.resize((configs.img_width, configs.img_height))

    # Convert to BGR, create input with batch_size: 1, and predict.
    bgr_img = utils.bgr2rgb(np.asarray(seed_img))
    img_input = np.expand_dims(bgr_img, axis=0)
    pred_class = np.argmax(model.predict(img_input))

    heatmap = visualize_cam(model, layer_idx, [pred_class],
                            np.asarray(seed_img))
    if returnAsImage is True:
        return Image.fromarray(heatmap)
    else:
        return heatmap
コード例 #4
0
def load_image(img_name):

    img = utils.load_img(f'../../scraped_database_tags_new/{img_name}',
                         target_size=IMAGE_SIZE)
    # plt.imshow(img)

    bgr_img = utils.bgr2rgb(img)

    return img, bgr_img
コード例 #5
0
    def generate_saliency(self, img, label_id):
        layer_name = 'predictions'
        layer_idx = [
            idx for idx, layer in enumerate(self.model_.layers)
            if layer.name == layer_name
        ][0]

        bgr_img = utils.bgr2rgb(img)
        img_input = np.expand_dims(img_to_array(bgr_img), axis=0)

        heatmap = visualize_saliency(self.model_, layer_idx, [label_id], img)

        return heatmap
コード例 #6
0
def generate_cam(show=True):
    """Generates a heatmap via grad-CAM method.
    First, the class prediction is determined, then we generate heatmap to visualize that class.
    """
    # # Build the VGG16 network with ImageNet weights
    # model = VGG16(weights='imagenet', include_top=True)
    # print('Model loaded.')

    # Build the InceptionV3 network with ImageNet weights
    # model = InceptionV3(weights='imagenet', include_top=True)
    # print('Model loaded.')

    json_file = open('inception_v3_tf_cat_dog_top_layer.json', 'r')
    loaded_model_json = json_file.read()
    json_file.close()
    loaded_model = model_from_json(loaded_model_json)
    # load weights into new model
    # loaded_model.load_weights("vgg16_tf_cat_dog_final_dense2.h5")
    loaded_model.load_weights("inception_v3_tf_cat_dog_top_layer.h5")
    print("Loaded model from disk")

    model = loaded_model

    # The name of the layer we want to visualize
    # (see model definition in vggnet.py)
    layer_name = 'predictions'
    layer_idx = [
        idx for idx, layer in enumerate(model.layers)
        if layer.name == layer_name
    ][0]

    for path in [
            '../resources/tiger.jpg', '../resources/ouzel.jpg',
            '../resources/ouzel_1.jpg'
    ]:
        # seed_img = utils.load_img(path, target_size=(224, 224))
        seed_img = utils.load_img(path, target_size=(299, 299))

        # Convert to BGR, create input with batch_size: 1, and predict.
        bgr_img = utils.bgr2rgb(seed_img)
        img_input = np.expand_dims(img_to_array(bgr_img), axis=0)
        pred_class = np.argmax(model.predict(img_input))

        heatmap = visualize_cam(model, layer_idx, [pred_class], seed_img)
        if show:
            plt.axis('off')
            plt.imshow(heatmap)
            plt.title('Attention - {}'.format(
                utils.get_imagenet_label(pred_class)))
            plt.show()
コード例 #7
0
ファイル: visualize.py プロジェクト: winnerineast/keras-vis
def visualize_attention(model, img_path, target):
    """Visualize attention for self driving `model`.

    Args:
        model: The keras model.
        img_path: The image path to use as input.
        target: One of 'right', 'left', 'same' to indicate whether regression target should 'increase', 'decrease'
            or remain 'same'.
    """
    img = utils.load_img(img_path, target_size=(FRAME_H, FRAME_W))

    # Convert to BGR, create input with batch_size: 1.
    bgr_img = utils.bgr2rgb(img)
    img_input = np.expand_dims(img_to_array(bgr_img), axis=0)
    pred = model.predict(img_input)[0][0]
    print('Predicted {}'.format(pred))

    if target == 'right':
        t = pred + 1
    elif target == 'left':
        t = pred - 1
    else:
        t = pred

    # Generate saliency visualization.
    saliency = visualize_regression_saliency(model,
                                             layer_idx=-1,
                                             output_indices=0,
                                             targets=t,
                                             seed_input=bgr_img)
    saliency = overlay(img, saliency, alpha=0.7)
    plt.figure()
    plt.axis('off')
    plt.title('Saliency to steer: {}'.format(target))
    plt.imshow(saliency)

    # Generate grad-CAM visualization.
    cam = visualize_regression_cam(model,
                                   layer_idx=-1,
                                   output_indices=0,
                                   targets=t,
                                   seed_input=bgr_img,
                                   penultimate_layer_idx=5)
    cam = overlay(img, cam, alpha=0.7)
    plt.figure()
    plt.axis('off')
    plt.title('grad-CAM to steer: {}'.format(target))
    plt.imshow(cam)

    plt.show()
コード例 #8
0
from matplotlib import pyplot as plt
#%matplotlib inline

from model import build_model, FRAME_W, FRAME_H
from keras.preprocessing.image import img_to_array
from vis.utils import utils

model = keras.models.load_model("model.hdf5")
print(model.summary())
#img = utils.load_img('images/test.jpg', target_size=(FRAME_H, FRAME_W))
img = utils.load_img('images/test.jpg')
plt.imshow(img)

# Convert to BGR, create input with batch_size: 1.
bgr_img = utils.bgr2rgb(img)
img_input = np.expand_dims(img_to_array(bgr_img), axis=0)
pred = model.predict(img_input)[0][0]
print('Predicted {}'.format(pred))

from vis.visualization import visualize_saliency, overlay

titles = ['right steering', 'left steering', 'maintain steering']
modifiers = [None, 'negate', 'small_values']
for i, modifier in enumerate(modifiers):
    heatmap = visualize_saliency(model,
                                 layer_idx=-1,
                                 filter_indices=0,
                                 seed_input=bgr_img,
                                 grad_modifier=modifier)
    plt.figure()
layer_name = 'predictions'
layer_idx = [
    idx for idx, layer in enumerate(model.layers) if layer.name == layer_name
][0]

image_paths = [
    "data/test/1.jpg",
    "data/test/2.jpg",
    "data/test/3.jpg",
    "data/test/4.jpg",
    "data/test/5.jpg",
    "data/test/6.jpg",
    "data/test/7.jpg",
    "data/test/8.jpg",
]

for path in image_paths:
    seed_img = utils.load_img(path, target_size=(299, 299))

    # Convert to BGR, create input with batch_size: 1, and predict.
    bgr_img = utils.bgr2rgb(seed_img)
    img_input = np.expand_dims(img_to_array(bgr_img), axis=0)
    pred_class = np.argmax(model.predict(img_input))

    heatmap = visualize_cam(model, layer_idx, [pred_class], seed_img)
    plt.axis('off')
    # plt.imshow(seed_img)
    plt.imshow(heatmap)
    plt.title('Attention - {}'.format(get_cat_dog_label(pred_class)))
    plt.show()
コード例 #10
0
print camera['X'].shape

pygame.init()
size = (320, 240)
pygame.display.set_caption("comma.ai data viewer")
screen = pygame.display.set_mode(size)

camera_surface = pygame.surface.Surface((320, 240), 0, 24).convert()

for i in range(0, camera['X'].shape[0]):

    angle_steers = camera['angle'][i]
    speed_ms = camera['speed'][i]

    imagem = camera['X'][i]
    #imshow(imagem)
    print imagem.shape
    pygame.surfarray.blit_array(camera_surface, imagem.swapaxes(0, 2))
    #camera_surface_2x = pygame.transform.scale2x(camera_surface)
    screen.blit(camera_surface, (0, 0))
    pygame.display.flip()
    data = numpy.array(imagem.swapaxes(0, 2).swapaxes(0, 1))
    file = 'test.jpeg'
    data = utils.bgr2rgb(data)
    cv2.imwrite(file, data)
    #plt.imshow(data)
    cv2.imshow('cv_img', data)
    #cv2.imwrite('teste', image_np)
    cv2.waitKey(0)