def _plot_time_range(times, figname): for i, t in enumerate(times): mvi.clf() cotr = Cotr(t) mvi.plot_blue_marble(r=1.0, rotate=t, crd_system=crd_system, nphi=256, ntheta=128, res=4, lines=True) mvi.plot_earth_3d(radius=1.005, crd_system=crd_system, night_only=True, opacity=0.5) mag_north = cotr.transform('sm', crd_system, [0, 0, 1.0]) mvi.mlab.points3d(*mag_north, scale_factor=0.05, mode='sphere', color=(0.992, 0.455, 0.0), resolution=32) mvi.orientation_axes(line_width=4.0) mvi.mlab.text(0.325, 0.95, viscid.format_datetime(t)) mvi.view(azimuth=0.0, elevation=90.0, distance=5.0, focalpoint=[0, 0, 0]) mvi.savefig("{0}_eq_{1:06d}.png".format(figname, i)) mvi.view(azimuth=0.0, elevation=0.0, distance=5.0, focalpoint=[0, 0, 0]) mvi.savefig("{0}_pole_{1:06d}.png".format(figname, i))
def run_test(fld, seeds, plot2d=True, plot3d=True, add_title="", view_kwargs=None, show=False): interpolated_fld = viscid.interp_trilin(fld, seeds) seed_name = seeds.__class__.__name__ if add_title: seed_name += " " + add_title try: if not plot2d: raise ImportError from viscid.plot import mpl mpl.plt.clf() # mpl.plt.plot(seeds.get_points()[2, :], fld) mpl_plot_kwargs = dict() if interpolated_fld.is_spherical(): mpl_plot_kwargs['hemisphere'] = 'north' mpl.plot(interpolated_fld, **mpl_plot_kwargs) mpl.plt.title(seed_name) mpl.plt.savefig(next_plot_fname(__file__, series='2d')) if show: mpl.plt.show() except ImportError: pass try: if not plot3d: raise ImportError from viscid.plot import mvi try: fig = _global_ns['figure'] mvi.clf() except KeyError: fig = mvi.figure(size=[1200, 800], offscreen=not show) _global_ns['figure'] = fig try: mesh = mvi.mesh_from_seeds(seeds, scalars=interpolated_fld) mesh.actor.property.backface_culling = True except RuntimeError: pass pts = seeds.get_points() p = mvi.points3d(pts[0], pts[1], pts[2], interpolated_fld.flat_data, scale_mode='none', scale_factor=0.02) mvi.axes(p) mvi.title(seed_name) if view_kwargs: mvi.view(**view_kwargs) mvi.savefig(next_plot_fname(__file__, series='3d')) if show: mvi.show() except ImportError: pass
def run_test(_fld, _seeds, plot2d=True, plot3d=True, title="", show=False, **kwargs): lines, topo = viscid.calc_streamlines(_fld, _seeds, **kwargs) topo_color = viscid.topology2color(topo) # downsample lines for plotting lines = [line[:, ::8] for line in lines] try: if not plot2d: raise ImportError from viscid.plot import mpl mpl.plt.clf() mpl.plot2d_lines(lines, scalars=topo_color, symdir="y", marker="^") if title: mpl.plt.title(title) mpl.plt.savefig(next_plot_fname(__file__, series="2d")) if show: mpl.plt.show() except ImportError: pass try: if not plot3d: raise ImportError from viscid.plot import mvi try: fig = _global_ns["figure"] mvi.clf() except KeyError: fig = mvi.figure(size=[1200, 800], offscreen=not show) _global_ns["figure"] = fig fld_mag = np.log(viscid.magnitude(_fld)) try: # note: mayavi.mlab.mesh can't take color tuples as scalars # so one can't use topo_color on a mesh surface. This # is a limitation of mayavi. To actually plot a specific # set of colors on a mesh, one must use a texture mesh = mvi.mesh_from_seeds(_seeds, scalars=topo, opacity=0.6) mesh.actor.property.backface_culling = True except RuntimeError: pass mvi.plot_lines(lines, scalars=fld_mag, tube_radius=0.01, cmap="viridis") if title: mvi.title(title) mvi.savefig(next_plot_fname(__file__, series="3d")) if show: mvi.show() except ImportError: pass
def main(): parser = argparse.ArgumentParser(description="Test quasi potential") parser.add_argument("--show", "--plot", action="store_true") args = vutil.common_argparse(parser) b, e = make_arcade(8.0, N=[64, 64, 64]) epar = viscid.project(e, b) epar.pretty_name = "E parallel" ############### # Calculate Xi seeds = viscid.Volume(xl=[-10, 0.0, -10], xh=[10, 0.0, 10], n=[64, 1, 64]) b_lines, _ = viscid.calc_streamlines(b, seeds) xi_dat = viscid.integrate_along_lines(b_lines, e, reduction='dot') xi = seeds.wrap_field(xi_dat, name='xi', pretty_name=r"$\Xi$") ################################ # Make 2D Matplotlib plot of Xi mpl.plot(xi, x=(-10, 10), y=(-10, 10), style='contourf', levels=256, lin=(2e-4, 1.5718)) mpl.plot(xi, x=(-10, 10), y=(-10, 10), style='contour', colors='grey', levels=[0.5, 1.0]) mpl.savefig(next_plot_fname(__file__)) if args.show: mpl.show() ############################################################ # Make 3D mayavi plot of Xi and the 'brightest' field lines # as well as some other field lines for context try: from viscid.plot import mvi except ImportError: xfail("Mayavi not installed") mvi.figure(size=[1200, 800], offscreen=not args.show) inds = np.argsort(xi_dat)[-64:] inds = np.concatenate([inds, np.arange(len(xi_dat))[::71]]) s = mvi.plot_lines(b_lines[inds], scalars=epar, cmap='viridis') mvi.mesh_from_seeds(seeds, scalars=xi, cmap='inferno') mvi.colorbar(s, orientation='horizontal', title=epar.pretty_name) # mvi.streamline(b, scalars=e, seedtype='sphere', seed_resolution=4, # integration_direction='both') oa = mvi.orientation_axes() oa.marker.set_viewport(0.75, 0.75, 1.0, 1.0) mvi.view(roll=0, azimuth=90, elevation=25, distance=30.0, focalpoint=[0, 2, 0]) mvi.savefig(next_plot_fname(__file__)) if args.show: mvi.show()
def main(): parser = argparse.ArgumentParser(description="Test calc") parser.add_argument("--show", "--plot", action="store_true") parser.add_argument("--interact", "-i", action="store_true") args = vutil.common_argparse(parser) f3d = viscid.load_file(sample_dir + '/sample_xdmf.3d.[0].xdmf') f_iono = viscid.load_file(sample_dir + "/sample_xdmf.iof.[0].xdmf") b = f3d["b"] v = f3d["v"] pp = f3d["pp"] e = f3d["e_cc"] mvi.figure(size=(1200, 800), offscreen=not args.show) ########################################################## # make b a dipole inside 3.1Re and set e = 0 inside 4.0Re cotr = viscid.Cotr(dip_tilt=0.0) # pylint: disable=not-callable moment = cotr.get_dipole_moment(crd_system=b) isphere_mask = viscid.make_spherical_mask(b, rmax=3.1) viscid.fill_dipole(b, m=moment, mask=isphere_mask) e_mask = viscid.make_spherical_mask(b, rmax=4.0) viscid.set_in_region(e, 0.0, alpha=0.0, mask=e_mask, out=e) ###################################### # plot a scalar cut plane of pressure pp_src = mvi.field2source(pp, center='node') scp = mvi.scalar_cut_plane(pp_src, plane_orientation='z_axes', opacity=0.5, transparent=True, view_controls=False, cmap="inferno", logscale=True) scp.implicit_plane.normal = [0, 0, -1] scp.implicit_plane.origin = [0, 0, 0] cbar = mvi.colorbar(scp, title=pp.name, orientation='vertical') ###################################### # plot a vector cut plane of the flow vcp = mvi.vector_cut_plane(v, scalars=pp_src, plane_orientation='z_axes', view_controls=False, mode='arrow', cmap='Greens_r') vcp.implicit_plane.normal = [0, 0, -1] vcp.implicit_plane.origin = [0, 0, 0] ############################## # plot very faint isosurfaces iso = mvi.iso_surface(pp_src, contours=5, opacity=0.1, cmap=False) ############################################################## # calculate B field lines && topology in Viscid and plot them seeds = viscid.SphericalPatch([0, 0, 0], [2, 0, 1], 30, 15, r=5.0, nalpha=5, nbeta=5) b_lines, topo = viscid.calc_streamlines(b, seeds, ibound=3.5, obound0=[-25, -20, -20], obound1=[15, 20, 20], wrap=True) mvi.plot_lines(b_lines, scalars=viscid.topology2color(topo)) ###################################################################### # plot a random circle at geosynchronus orbit with scalars colored # by the Matplotlib viridis color map, just because we can; this is # a useful toy for debugging circle = viscid.Circle(p0=[0, 0, 0], r=6.618, n=128, endpoint=True) scalar = np.sin(circle.as_local_coordinates().get_crd('phi')) surf = mvi.plot_line(circle.get_points(), scalars=scalar, clim=0.8, cmap="Spectral_r") ###################################################################### # Use Mayavi (VTK) to calculate field lines using an interactive seed # These field lines are colored by E parallel epar = viscid.project(e, b) epar.name = "Epar" bsl2 = mvi.streamline(b, epar, seedtype='sphere', seed_resolution=4, integration_direction='both', clim=(-0.05, 0.05)) # now tweak the VTK streamlines bsl2.stream_tracer.maximum_propagation = 20. bsl2.seed.widget.center = [-11, 0, 0] bsl2.seed.widget.radius = 1.0 bsl2.streamline_type = 'tube' bsl2.tube_filter.radius = 0.03 bsl2.stop() # this stop/start was a hack to get something to update bsl2.start() bsl2.seed.widget.enabled = False cbar = mvi.colorbar(bsl2, title=epar.name, orientation='horizontal') cbar.scalar_bar_representation.position = (0.2, 0.01) cbar.scalar_bar_representation.position2 = (0.6, 0.14) ############################################################### # Make a contour at the open-closed boundary in the ionosphere seeds_iono = viscid.Sphere(r=1.063, pole=-moment, ntheta=256, nphi=256, thetalim=(0, 180), philim=(0, 360), crd_system=b) _, topo_iono = viscid.calc_streamlines(b, seeds_iono, ibound=1.0, nr_procs='all', output=viscid.OUTPUT_TOPOLOGY) topo_iono = np.log2(topo_iono) m = mvi.mesh_from_seeds(seeds_iono, scalars=topo_iono, opacity=1.0, clim=(0, 3), color=(0.992, 0.445, 0.0)) m.enable_contours = True #################################################################### # Plot the ionosphere, note that the sample data has the ionosphere # at a different time, so the open-closed boundary found above # will not be consistant with the field aligned currents fac_tot = 1e9 * f_iono['fac_tot'] m = mvi.plot_ionosphere(fac_tot, bounding_lat=30.0, vmin=-300, vmax=300, opacity=0.75, rotate=cotr, crd_system=b) m.actor.property.backface_culling = True ######################################################################## # Add some markers for earth, i.e., real earth, and dayside / nightside # representation mvi.plot_blue_marble(r=1.0, lines=False, ntheta=64, nphi=128, rotate=cotr, crd_system=b) # now shade the night side with a transparent black hemisphere mvi.plot_earth_3d(radius=1.01, night_only=True, opacity=0.5, crd_system=b) #################### # Finishing Touches # mvi.axes(pp_src, nb_labels=5) oa = mvi.orientation_axes() oa.marker.set_viewport(0.75, 0.75, 1.0, 1.0) # note that resize won't work if the current figure has the # off_screen_rendering flag set # mvi.resize([1200, 800]) mvi.view(azimuth=45, elevation=70, distance=35.0, focalpoint=[-2, 0, 0]) ############## # Save Figure # print("saving png") # mvi.savefig('mayavi_msphere_sample.png') # print("saving x3d") # # x3d files can be turned into COLLADA files with meshlab, and # # COLLADA (.dae) files can be opened in OS X's preview # # # # IMPORTANT: for some reason, using bounding_lat in mvi.plot_ionosphere # # causes a segfault when saving x3d files # # # mvi.savefig('mayavi_msphere_sample.x3d') # print("done") mvi.savefig(next_plot_fname(__file__)) ########################### # Interact Programatically if args.interact: mvi.interact() ####################### # Interact Graphically if args.show: mvi.show()
def main(): parser = argparse.ArgumentParser() parser.add_argument("--notwo", dest='notwo', action="store_true") parser.add_argument("--nothree", dest='nothree', action="store_true") parser.add_argument("--show", "--plot", action="store_true") args = viscid.vutil.common_argparse(parser, default_verb=0) plot2d = not args.notwo plot3d = not args.nothree # plot2d = True # plot3d = True # args.show = True img = np.load(sample_dir + "/logo.npy") x = np.linspace(-1, 1, img.shape[0]) y = np.linspace(-1, 1, img.shape[1]) z = np.linspace(-1, 1, img.shape[2]) logo = viscid.arrays2field(img, [x, y, z]) if 1: viscid.logger.info('Testing Line...') seeds = viscid.Line([-1, -1, 0], [1, 1, 2], n=5) run_test(logo, seeds, plot2d=plot2d, plot3d=plot3d, show=args.show) if 1: viscid.logger.info('Testing Plane...') seeds = viscid.Plane([0.0, 0.0, 0.0], [1, 1, 1], [1, 0, 0], 2, 2, nl=160, nm=170, NL_are_vectors=True) run_test(logo, seeds, plot2d=plot2d, plot3d=plot3d, show=args.show) if 1: viscid.logger.info('Testing Volume...') seeds = viscid.Volume([-0.8, -0.8, -0.8], [0.8, 0.8, 0.8], n=[64, 64, 3]) # note: can't make a 2d plot of the volume w/o a slice run_test(logo, seeds, plot2d=False, plot3d=plot3d, add_title="3d", show=args.show) if 1: viscid.logger.info('Testing Volume (with ignorable dim)...') seeds = viscid.Volume([-0.8, -0.8, 0.0], [0.8, 0.8, 0.0], n=[64, 64, 1]) run_test(logo, seeds, plot2d=plot2d, plot3d=plot3d, add_title="2d", show=args.show) if 1: viscid.logger.info('Testing Spherical Sphere (phi, theta)...') seeds = viscid.Sphere([0, 0, 0], r=1.0, ntheta=160, nphi=170, pole=[-1, -1, -1], theta_phi=False) run_test(logo, seeds, plot2d=plot2d, plot3d=plot3d, add_title="PT", show=args.show) if 1: viscid.logger.info('Testing Spherical Sphere (theta, phi)...') seeds = viscid.Sphere([0, 0, 0], r=1.0, ntheta=160, nphi=170, pole=[-1, -1, -1], theta_phi=True) run_test(logo, seeds, plot2d=plot2d, plot3d=plot3d, add_title="TP", show=args.show) if 1: viscid.logger.info('Testing Spherical Cap (phi, theta)...') seeds = viscid.SphericalCap(p0=[0, 0, 0], r=1.0, ntheta=64, nphi=80, pole=[-1, -1, -1], theta_phi=False) run_test(logo, seeds, plot2d=plot2d, plot3d=plot3d, add_title="PT", view_kwargs=dict(azimuth=180, elevation=180), show=args.show) if 1: viscid.logger.info('Testing Spherical Cap (theta, phi)...') seeds = viscid.SphericalCap(p0=[0, 0, 0], r=1.0, ntheta=64, nphi=80, pole=[-1, -1, -1], theta_phi=True) run_test(logo, seeds, plot2d=plot2d, plot3d=plot3d, add_title="TP", view_kwargs=dict(azimuth=180, elevation=180), show=args.show) if 1: viscid.logger.info('Testing Spherical Patch...') seeds = viscid.SphericalPatch(p0=[0, 0, 0], p1=[0, -0, -1], max_alpha=30.0, max_beta=59.9, nalpha=65, nbeta=80, r=0.5, roll=45.0) run_test(logo, seeds, plot2d=plot2d, plot3d=plot3d, show=args.show) if 1: viscid.logger.info('Testing RectilinearMeshPoints...') f = viscid.load_file(sample_dir + '/sample_xdmf.3d.[-1].xdmf') slc = 'x=-40f:12f, y=-10f:10f, z=-10f:10f' b = f['b'][slc] z = b.get_crd('z') sheet_iz = np.argmin(b['x']**2, axis=2) sheet_pts = b['z=0:1'].get_points() sheet_pts[2, :] = z[sheet_iz].reshape(-1) isphere_mask = np.sum(sheet_pts[:2, :]**2, axis=0) < 5**2 day_mask = sheet_pts[0:1, :] > -1.0 sheet_pts[2, :] = np.choose(isphere_mask, [sheet_pts[2, :], 0]) sheet_pts[2, :] = np.choose(day_mask, [sheet_pts[2, :], 0]) nx, ny, _ = b.sshape sheet_seed = viscid.RectilinearMeshPoints(sheet_pts.reshape(3, nx, ny)) vx_sheet = viscid.interp_nearest(f['vx'], sheet_seed) try: if not plot2d: raise ImportError from viscid.plot import mpl mpl.clf() mpl.plot(vx_sheet, symmetric=True) mpl.plt.savefig(next_plot_fname(__file__, series='2d')) if args.show: mpl.show() except ImportError: pass try: if not plot3d: raise ImportError from viscid.plot import mvi mvi.clf() mesh = mvi.mesh_from_seeds(sheet_seed, scalars=vx_sheet, clim=(-400, 400)) mvi.plot_earth_3d(crd_system=b) mvi.view(azimuth=+90.0 + 45.0, elevation=90.0 - 25.0, distance=30.0, focalpoint=(-10.0, +1.0, +1.0)) mvi.title("RectilinearMeshPoints") mvi.savefig(next_plot_fname(__file__, series='3d')) if args.show: mvi.show() except ImportError: pass return 0