def make_vector_fld(): x, y, z = make_grid() f0 = viscid.empty((x, y, z), dtype=DTYPE, nr_comps=3, center='node') viscid.fill_dipole(f0) # seeds = viscid.Sphere(r=10.0, nphi=64, ntheta=32) seeds = viscid.Sphere(r=10.0, nphi=32, ntheta=48) return f0, seeds
def _main(): global offscreen_vlab parser = argparse.ArgumentParser(description=__doc__) parser.add_argument("--notwo", dest='notwo', action="store_true") parser.add_argument("--nothree", dest='nothree', action="store_true") parser.add_argument("--show", "--plot", action="store_true") args = viscid.vutil.common_argparse(parser, default_verb=0) plot2d = not args.notwo plot3d = not args.nothree # plot2d = True # plot3d = True # args.show = True offscreen_vlab = not args.show img = np.load(os.path.join(sample_dir, "logo.npy")) x = np.linspace(-1, 1, img.shape[0]) y = np.linspace(-1, 1, img.shape[1]) z = np.linspace(-1, 1, img.shape[2]) logo = viscid.arrays2field([x, y, z], img) if 1: viscid.logger.info('Testing Point with custom local coordinates...') pts = np.vstack([[-1, -0.5, 0, 0.5, 1], [-1, -0.5, 0, 0.5, 1], [ 0, 0.5, 1, 1.5, 2]]) local_crds = viscid.asarray_datetime64([0, 60, 120, 180, 240], conservative=True) seeds = viscid.Point(pts, local_crds=local_crds) run_test(logo, seeds, plot2d=plot2d, plot3d=plot3d, show=args.show) if 1: viscid.logger.info('Testing Line...') seeds = viscid.Line([-1, -1, 0], [1, 1, 2], n=5) run_test(logo, seeds, plot2d=plot2d, plot3d=plot3d, show=args.show) if 1: viscid.logger.info('Testing Plane...') seeds = viscid.Plane([0.0, 0.0, 0.0], [1, 1, 1], [1, 0, 0], 2, 2, nl=160, nm=170, NL_are_vectors=True) run_test(logo, seeds, plot2d=plot2d, plot3d=plot3d, show=args.show) if 1: viscid.logger.info('Testing Volume...') seeds = viscid.Volume([-0.8, -0.8, -0.8], [0.8, 0.8, 0.8], n=[64, 64, 3]) # note: can't make a 2d plot of the volume w/o a slice run_test(logo, seeds, plot2d=False, plot3d=plot3d, add_title="3d", show=args.show) if 1: viscid.logger.info('Testing Volume (with ignorable dim)...') seeds = viscid.Volume([-0.8, -0.8, 0.0], [0.8, 0.8, 0.0], n=[64, 64, 1]) run_test(logo, seeds, plot2d=plot2d, plot3d=plot3d, add_title="2d", show=args.show) if 1: viscid.logger.info('Testing Spherical Sphere (phi, theta)...') seeds = viscid.Sphere([0, 0, 0], r=1.0, ntheta=160, nphi=170, pole=[-1, -1, -1], theta_phi=False) run_test(logo, seeds, plot2d=plot2d, plot3d=plot3d, add_title="PT", show=args.show) if 1: viscid.logger.info('Testing Spherical Sphere (theta, phi)...') seeds = viscid.Sphere([0, 0, 0], r=1.0, ntheta=160, nphi=170, pole=[-1, -1, -1], theta_phi=True) run_test(logo, seeds, plot2d=plot2d, plot3d=plot3d, add_title="TP", show=args.show) if 1: viscid.logger.info('Testing Spherical Cap (phi, theta)...') seeds = viscid.SphericalCap(p0=[0, 0, 0], r=1.0, ntheta=64, nphi=80, pole=[-1, -1, -1], theta_phi=False) run_test(logo, seeds, plot2d=plot2d, plot3d=plot3d, add_title="PT", view_kwargs=dict(azimuth=180, elevation=180), show=args.show) if 1: viscid.logger.info('Testing Spherical Cap (theta, phi)...') seeds = viscid.SphericalCap(p0=[0, 0, 0], r=1.0, ntheta=64, nphi=80, pole=[-1, -1, -1], theta_phi=True) run_test(logo, seeds, plot2d=plot2d, plot3d=plot3d, add_title="TP", view_kwargs=dict(azimuth=180, elevation=180), show=args.show) if 1: viscid.logger.info('Testing Spherical Patch...') seeds = viscid.SphericalPatch(p0=[0, 0, 0], p1=[0, -0, -1], max_alpha=30.0, max_beta=59.9, nalpha=65, nbeta=80, r=0.5, roll=45.0) run_test(logo, seeds, plot2d=plot2d, plot3d=plot3d, show=args.show) if 1: # this spline test is very custom viscid.logger.info('Testing Spline...') try: import scipy.interpolate as interpolate except ImportError: msg = "XFail: ImportError (is scipy installed?)" if plot2d: try: from viscid.plot import vpyplot as vlt from matplotlib import pyplot as plt plt.clf() plt.annotate(msg, xy=(0.3, 0.4), xycoords='axes fraction') plt.savefig(next_plot_fname(__file__, series='2d')) plt.savefig(next_plot_fname(__file__, series='2d')) plt.savefig(next_plot_fname(__file__, series='3d')) if args.show: plt.show() except ImportError: pass else: knots = np.array([[ 0.2, 0.5, 0.0], [-0.2, 0.5, 0.2], [-0.2, 0.0, 0.4], [ 0.2, 0.0, 0.2], [ 0.2, -0.5, 0.0], [-0.2, -0.5, 0.2]]).T seed_name = "Spline" fld = logo seeds = viscid.Spline(knots) seed_pts = seeds.get_points() interp_fld = viscid.interp_trilin(fld, seeds) if plot2d: try: from viscid.plot import vpyplot as vlt from matplotlib import pyplot as plt plt.clf() vlt.plot(interp_fld) plt.title(seed_name) plt.savefig(next_plot_fname(__file__, series='2d')) if args.show: plt.show() plt.clf() from matplotlib import rcParams _ms = rcParams['lines.markersize'] plt.gca().scatter(knots[0, :], knots[1, :], s=(2 * _ms)**2, marker='^', color='y') plt.gca().scatter(seed_pts[0, :], seed_pts[1, :], s=(1.5 * _ms)**2, marker='o', color='k') vlt.plot2d_line(seed_pts, scalars=interp_fld.flat_data, symdir='z') plt.title(seed_name) plt.savefig(next_plot_fname(__file__, series='2d')) if args.show: plt.show() except ImportError: pass if plot3d: try: vlab, _ = get_mvi_fig() vlab.points3d(knots[0], knots[1], knots[2], color=(1.0, 1.0, 0), scale_mode='none', scale_factor=0.04) p = vlab.points3d(seed_pts[0], seed_pts[1], seed_pts[2], color=(0, 0, 0), scale_mode='none', scale_factor=0.03) vlab.plot_line(seed_pts, scalars=interp_fld.flat_data, tube_radius=0.01) vlab.axes(p) vlab.title(seed_name) vlab.mlab.roll(-90.0) vlab.savefig(next_plot_fname(__file__, series='3d')) if args.show: vlab.show(stop=True) except ImportError: pass if 1: viscid.logger.info('Testing RectilinearMeshPoints...') f = viscid.load_file(os.path.join(sample_dir, 'sample_xdmf.3d.[-1].xdmf')) slc = 'x=-40j:12j, y=-10j:10j, z=-10j:10j' b = f['b'][slc] z = b.get_crd('z') sheet_iz = np.argmin(b['x']**2, axis=2) sheet_pts = b['z=0:1'].get_points() sheet_pts[2, :] = z[sheet_iz].reshape(-1) isphere_mask = np.sum(sheet_pts[:2, :]**2, axis=0) < 5**2 day_mask = sheet_pts[0:1, :] > -1.0 sheet_pts[2, :] = np.choose(isphere_mask, [sheet_pts[2, :], 0]) sheet_pts[2, :] = np.choose(day_mask, [sheet_pts[2, :], 0]) nx, ny, _ = b.sshape sheet_seed = viscid.RectilinearMeshPoints(sheet_pts.reshape(3, nx, ny)) vx_sheet = viscid.interp_nearest(f['vx'], sheet_seed) try: if not plot2d: raise ImportError from viscid.plot import vpyplot as vlt from matplotlib import pyplot as plt vlt.clf() vlt.plot(vx_sheet, symmetric=True) plt.savefig(next_plot_fname(__file__, series='2d')) if args.show: vlt.show() except ImportError: pass try: if not plot3d: raise ImportError vlab, _ = get_mvi_fig() mesh = vlab.mesh_from_seeds(sheet_seed, scalars=vx_sheet, clim=(-400, 400)) vlab.plot_earth_3d(crd_system=b) vlab.view(azimuth=+90.0 + 45.0, elevation=90.0 - 25.0, distance=30.0, focalpoint=(-10.0, +1.0, +1.0)) vlab.title("RectilinearMeshPoints") vlab.savefig(next_plot_fname(__file__, series='3d')) if args.show: vlab.show(stop=True) except ImportError: pass # prevent weird xorg bad-instructions on tear down if 'figure' in _global_ns and _global_ns['figure'] is not None: from viscid.plot import vlab vlab.mlab.close(_global_ns['figure']) return 0
def trace_separator(grid, b_slcstr="x=-25f:15f, y=-30f:30f, z=-15f:15f", r=1.0, plot=False, trace_opts=None, cache=True, cache_dir=None): """Trace a separator line from most dawnward null **Still in testing** Uses the bisection algorithm. Args: grid (Grid): A grid that has a "b" field b_slcstr (str): Some valid slice for B field r (float): spatial step of separator line plot (bool): make debugging plots trace_opts (dict): passed to streamline function cache (bool, str): Save to and load from cache, if "force", then don't load from cache if it exists, but do save a cache at the end cache_dir (str): Directory for cache, if None, same directory as that file to which the grid belongs Raises: IOError: Description Returns: tuple: (separator_lines, nulls) - **separator_lines** (list): list of M 3xN ndarrays that represent M separator lines with N points - **nulls** (ndarray): 3xN array of N null points """ if not cache_dir: cache_dir = grid.find_info("_viscid_dirname", "./") run_name = grid.find_info("run") sep_fname = "{0}/{1}.sep.{2:06.0f}".format(cache_dir, run_name, grid.time) try: if isinstance(cache, string_types) and cache.strip().lower() == "force": raise IOError() with np.load(sep_fname + ".npz") as dat: sep_iter = (f for f in dat.files if f.startswith("arr_")) _it = sorted(sep_iter, key=lambda s: int(s[len("arr_"):])) seps = [dat[n] for n in _it] nulls = dat['nulls'] except IOError: _b = grid['b'][b_slcstr] _, nulls = viscid.find_nulls(_b['x=-30f:15f'], ibound=5.0) # get most dawnward null, nulls2 is all nulls except p0 nullind = np.argmin(nulls[1, :]) p0 = nulls[:, nullind] nulls2 = np.concatenate([nulls[:, :nullind], nulls[:, (nullind + 1):]], axis=1) if plot: from viscid.plot import vlab vlab.plot_earth_3d(crd_system='gse') vlab.points3d(nulls2[0], nulls2[1], nulls2[2], color=(0, 0, 0), scale_factor=1.0) vlab.points3d(nulls[0, nullind], nulls[1, nullind], nulls[2, nullind], color=(1, 1, 1), scale_factor=1.0) seed = viscid.Sphere(p0=p0, r=r, ntheta=30, nphi=60, theta_endpoint=True, phi_endpoint=True) p1 = viscid.get_sep_pts_bisect(_b, seed, max_depth=12, plot=plot, trace_opts=trace_opts) # print("p1 shape", p1.shape) # if p1.shape[1] > 2: # raise RuntimeError("Invalid B field, should be no branch @ null") seps = [] sep_stubs = [] for i in range(p1.shape[1]): sep_stubs.append([p0, p1[:, i]]) # print("??", sep_stubs) while sep_stubs: sep = sep_stubs.pop(0) # print("!!! new stub") for i in count(): # print("::", i) seed = viscid.SphericalPatch(p0=sep[-1], p1=sep[-1] - sep[-2], r=r, nalpha=240, nbeta=240) pn = viscid.get_sep_pts_bisect(_b, seed, max_depth=8, plot=plot, trace_opts=trace_opts) if pn.shape[1] == 0: # print("END: pn.shape[1] == 0") break # print("++", nulls2.shape, pn.shape) closest_null_dist = np.min( np.linalg.norm(nulls2 - pn[:, :1], axis=0)) # print("closest_null_dist:", closest_null_dist) if closest_null_dist < 1.01 * r: # print("END: within 1.01 of a null") break # print("??", pn) for j in range(1, pn.shape[1]): # print("inserting new stub") sep_stubs.insert(0, [sep[-1], pn[:, j]]) sep.append(pn[:, 0]) # print("sep", sep) seps.append(np.stack(sep, axis=1)) if cache: np.savez_compressed(sep_fname, *seps, nulls=nulls) return seps, nulls
def benchmark_streamline(precompile=True, profile=True, scale=True, plot=True): which = "streamline" print(which) print('-' * len(which)) f0, seeds = make_vector_fld() print("Timing", which) sl_kwargs = dict(ibound=3.7, ds0=0.020) lines, _ = viscid.streamlines(f0, seeds, **sl_kwargs) nsegs_cython = np.sum([line.shape[1] for line in lines]) lines = None ft_stats, cy_stats = dict(), dict() bench_output_type = viscid.OUTPUT_TOPOLOGY sl_kwargs.update(output=bench_output_type) retFT = viscid.timeit(fort_topology, f0, seeds, timeit_repeat=6, timeit_stats=ft_stats) _, retCY = viscid.timeit(viscid.streamlines, f0, seeds, timeit_repeat=6, timeit_stats=cy_stats, **sl_kwargs) fort_per_seg = ft_stats['min'] / retFT.get_info('nsegs') cy_per_seg = cy_stats['min'] / nsegs_cython print("Segs Fortran", retFT.get_info('nsegs')) print("Segs Cython ", nsegs_cython) print("Fortran took {0:.3g} sec/seg".format(fort_per_seg)) print("Cython took {0:.3g} sec/seg".format(cy_per_seg)) print_seedup("Cython", cy_per_seg, "Fortran", fort_per_seg, prefix="@ ") if plot: from viscid.plot import mpl mpl.clf() mpl.subplot(121, projection='polar') mpl.plot(retCY, hemisphere='north') mpl.subplot(122, projection='polar') mpl.plot(retCY, hemisphere='south') mpl.show() if scale: thetas = np.logspace(np.log10(3), np.log10(144), 8).astype('i') cy_nsegs = [None] * len(thetas) fort_nsegs = [None] * len(thetas) cy_mintime = [None] * len(thetas) fort_mintime = [None] * len(thetas) for i, ntheta in enumerate(thetas): seeds = viscid.Sphere(r=10.0, ntheta=ntheta, nphi=32) _stats = dict() topo = viscid.timeit(fort_topology, f0, seeds, timeit_repeat=5, timeit_stats=_stats, timeit_quiet=True) fort_nsegs[i] = topo.get_info('nsegs') fort_mintime[i] = _stats['min'] _, topo = viscid.timeit(viscid.calc_streamlines, f0, seeds, ibound=3.7, ds0=0.020, output=bench_output_type, timeit_repeat=5, timeit_stats=_stats, timeit_quiet=True) lines, _ = viscid.streamlines(f0, seeds, ibound=3.7, ds0=0.020) cy_nsegs[i] = np.sum([line.shape[1] for line in lines]) cy_mintime[i] = _stats['min'] from viscid.plot import mpl mpl.clf() mpl.plt.plot(cy_nsegs, cy_mintime, label="Cython") mpl.plt.plot(fort_nsegs, fort_mintime, label="Fortran") mpl.plt.legend(loc=0) mpl.plt.xlabel('Number of segments calculated') mpl.plt.ylabel('time to calculate') mpl.show() mpl.clf() cy_tperseg = np.array(cy_mintime) / np.array(cy_nsegs) fort_tperseg = np.array(fort_mintime) / np.array(fort_nsegs) mpl.plt.plot(thetas, cy_tperseg / fort_tperseg, label="over cython") mpl.plt.xlabel('ntheta') mpl.plt.ylabel('Fortran Speedup') mpl.show()
def _main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument("--notwo", dest='notwo', action="store_true") parser.add_argument("--nothree", dest='nothree', action="store_true") parser.add_argument("--show", "--plot", action="store_true") args = viscid.vutil.common_argparse(parser, default_verb=0) plot2d = not args.notwo plot3d = not args.nothree # plot2d = True # plot3d = True # args.show = True img = np.load(os.path.join(sample_dir, "logo.npy")) x = np.linspace(-1, 1, img.shape[0]) y = np.linspace(-1, 1, img.shape[1]) z = np.linspace(-1, 1, img.shape[2]) logo = viscid.arrays2field([x, y, z], img) if 1: viscid.logger.info('Testing Line...') seeds = viscid.Line([-1, -1, 0], [1, 1, 2], n=5) run_test(logo, seeds, plot2d=plot2d, plot3d=plot3d, show=args.show) if 1: viscid.logger.info('Testing Plane...') seeds = viscid.Plane([0.0, 0.0, 0.0], [1, 1, 1], [1, 0, 0], 2, 2, nl=160, nm=170, NL_are_vectors=True) run_test(logo, seeds, plot2d=plot2d, plot3d=plot3d, show=args.show) if 1: viscid.logger.info('Testing Volume...') seeds = viscid.Volume([-0.8, -0.8, -0.8], [0.8, 0.8, 0.8], n=[64, 64, 3]) # note: can't make a 2d plot of the volume w/o a slice run_test(logo, seeds, plot2d=False, plot3d=plot3d, add_title="3d", show=args.show) if 1: viscid.logger.info('Testing Volume (with ignorable dim)...') seeds = viscid.Volume([-0.8, -0.8, 0.0], [0.8, 0.8, 0.0], n=[64, 64, 1]) run_test(logo, seeds, plot2d=plot2d, plot3d=plot3d, add_title="2d", show=args.show) if 1: viscid.logger.info('Testing Spherical Sphere (phi, theta)...') seeds = viscid.Sphere([0, 0, 0], r=1.0, ntheta=160, nphi=170, pole=[-1, -1, -1], theta_phi=False) run_test(logo, seeds, plot2d=plot2d, plot3d=plot3d, add_title="PT", show=args.show) if 1: viscid.logger.info('Testing Spherical Sphere (theta, phi)...') seeds = viscid.Sphere([0, 0, 0], r=1.0, ntheta=160, nphi=170, pole=[-1, -1, -1], theta_phi=True) run_test(logo, seeds, plot2d=plot2d, plot3d=plot3d, add_title="TP", show=args.show) if 1: viscid.logger.info('Testing Spherical Cap (phi, theta)...') seeds = viscid.SphericalCap(p0=[0, 0, 0], r=1.0, ntheta=64, nphi=80, pole=[-1, -1, -1], theta_phi=False) run_test(logo, seeds, plot2d=plot2d, plot3d=plot3d, add_title="PT", view_kwargs=dict(azimuth=180, elevation=180), show=args.show) if 1: viscid.logger.info('Testing Spherical Cap (theta, phi)...') seeds = viscid.SphericalCap(p0=[0, 0, 0], r=1.0, ntheta=64, nphi=80, pole=[-1, -1, -1], theta_phi=True) run_test(logo, seeds, plot2d=plot2d, plot3d=plot3d, add_title="TP", view_kwargs=dict(azimuth=180, elevation=180), show=args.show) if 1: viscid.logger.info('Testing Spherical Patch...') seeds = viscid.SphericalPatch(p0=[0, 0, 0], p1=[0, -0, -1], max_alpha=30.0, max_beta=59.9, nalpha=65, nbeta=80, r=0.5, roll=45.0) run_test(logo, seeds, plot2d=plot2d, plot3d=plot3d, show=args.show) if 1: viscid.logger.info('Testing RectilinearMeshPoints...') f = viscid.load_file(os.path.join(sample_dir, 'sample_xdmf.3d.[-1].xdmf')) slc = 'x=-40f:12f, y=-10f:10f, z=-10f:10f' b = f['b'][slc] z = b.get_crd('z') sheet_iz = np.argmin(b['x']**2, axis=2) sheet_pts = b['z=0:1'].get_points() sheet_pts[2, :] = z[sheet_iz].reshape(-1) isphere_mask = np.sum(sheet_pts[:2, :]**2, axis=0) < 5**2 day_mask = sheet_pts[0:1, :] > -1.0 sheet_pts[2, :] = np.choose(isphere_mask, [sheet_pts[2, :], 0]) sheet_pts[2, :] = np.choose(day_mask, [sheet_pts[2, :], 0]) nx, ny, _ = b.sshape sheet_seed = viscid.RectilinearMeshPoints(sheet_pts.reshape(3, nx, ny)) vx_sheet = viscid.interp_nearest(f['vx'], sheet_seed) try: if not plot2d: raise ImportError from matplotlib import pyplot as plt from viscid.plot import vpyplot as vlt vlt.clf() vlt.plot(vx_sheet, symmetric=True) plt.savefig(next_plot_fname(__file__, series='2d')) if args.show: vlt.show() except ImportError: pass try: if not plot3d: raise ImportError from viscid.plot import vlab vlab.clf() mesh = vlab.mesh_from_seeds(sheet_seed, scalars=vx_sheet, clim=(-400, 400)) vlab.plot_earth_3d(crd_system=b) vlab.view(azimuth=+90.0 + 45.0, elevation=90.0 - 25.0, distance=30.0, focalpoint=(-10.0, +1.0, +1.0)) vlab.title("RectilinearMeshPoints") vlab.savefig(next_plot_fname(__file__, series='3d')) if args.show: vlab.show() except ImportError: pass # prevent weird xorg bad-instructions on tear down if 'figure' in _global_ns and _global_ns['figure'] is not None: from viscid.plot import vlab vlab.mlab.close(_global_ns['figure']) return 0
def _main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument("--show", "--plot", action="store_true") parser.add_argument("--interact", "-i", action="store_true") args = vutil.common_argparse(parser) f3d = viscid.load_file(os.path.join(sample_dir, 'sample_xdmf.3d.[0].xdmf')) f_iono = viscid.load_file( os.path.join(sample_dir, "sample_xdmf.iof.[0].xdmf")) b = f3d["b"] v = f3d["v"] pp = f3d["pp"] e = f3d["e_cc"] vlab.mlab.options.offscreen = not args.show vlab.figure(size=(1280, 800)) ########################################################## # make b a dipole inside 3.1Re and set e = 0 inside 4.0Re cotr = viscid.Cotr(time='1990-03-21T14:48', dip_tilt=0.0) # pylint: disable=not-callable moment = cotr.get_dipole_moment(crd_system=b) isphere_mask = viscid.make_spherical_mask(b, rmax=3.1) viscid.fill_dipole(b, m=moment, mask=isphere_mask) e_mask = viscid.make_spherical_mask(b, rmax=4.0) viscid.set_in_region(e, 0.0, alpha=0.0, mask=e_mask, out=e) ###################################### # plot a scalar cut plane of pressure pp_src = vlab.field2source(pp, center='node') scp = vlab.scalar_cut_plane(pp_src, plane_orientation='z_axes', opacity=0.5, transparent=True, view_controls=False, cmap="inferno", logscale=True) scp.implicit_plane.normal = [0, 0, -1] scp.implicit_plane.origin = [0, 0, 0] scp.enable_contours = True scp.contour.filled_contours = True scp.contour.number_of_contours = 64 cbar = vlab.colorbar(scp, title=pp.name, orientation='vertical') cbar.scalar_bar_representation.position = (0.01, 0.13) cbar.scalar_bar_representation.position2 = (0.08, 0.76) ###################################### # plot a vector cut plane of the flow vcp = vlab.vector_cut_plane(v, scalars=pp_src, plane_orientation='z_axes', view_controls=False, mode='arrow', cmap='Greens_r') vcp.implicit_plane.normal = [0, 0, -1] vcp.implicit_plane.origin = [0, 0, 0] ############################## # plot very faint isosurfaces vx_src = vlab.field2source(v['x'], center='node') iso = vlab.iso_surface(vx_src, contours=[0.0], opacity=0.008, cmap='Pastel1') ############################################################## # calculate B field lines && topology in Viscid and plot them seedsA = viscid.SphericalPatch([0, 0, 0], [2, 0, 1], 30, 15, r=5.0, nalpha=5, nbeta=5) seedsB = viscid.SphericalPatch([0, 0, 0], [1.9, 0, -20], 30, 15, r=5.0, nalpha=1, nbeta=5) seeds = np.concatenate([seedsA, seedsB], axis=1) b_lines, topo = viscid.calc_streamlines(b, seeds, ibound=3.5, obound0=[-25, -20, -20], obound1=[15, 20, 20], wrap=True) vlab.plot_lines(b_lines, scalars=viscid.topology2color(topo)) ###################################################################### # plot a random circle at geosynchronus orbit with scalars colored # by the Matplotlib viridis color map, just because we can; this is # a useful toy for debugging circle = viscid.Circle(p0=[0, 0, 0], r=6.618, n=128, endpoint=True) scalar = np.sin(circle.as_local_coordinates().get_crd('phi')) surf = vlab.plot_line(circle.get_points(), scalars=scalar, clim=0.8, cmap="Spectral_r") ###################################################################### # Use Mayavi (VTK) to calculate field lines using an interactive seed # These field lines are colored by E parallel epar = viscid.project(e, b) epar.name = "Epar" bsl2 = vlab.streamline(b, epar, seedtype='plane', seed_resolution=4, integration_direction='both', clim=(-0.05, 0.05)) # now tweak the VTK streamlines bsl2.stream_tracer.maximum_propagation = 20. bsl2.seed.widget.origin = [-11, -5.0, -2.0] bsl2.seed.widget.point1 = [-11, 5.0, -2.0] bsl2.seed.widget.point2 = [-11.0, -5.0, 2.0] bsl2.streamline_type = 'tube' bsl2.tube_filter.radius = 0.03 bsl2.stop() # this stop/start was a hack to get something to update bsl2.start() bsl2.seed.widget.enabled = False cbar = vlab.colorbar(bsl2, title=epar.name, label_fmt='%.3f', orientation='horizontal') cbar.scalar_bar_representation.position = (0.15, 0.01) cbar.scalar_bar_representation.position2 = (0.72, 0.10) ############################################################### # Make a contour at the open-closed boundary in the ionosphere seeds_iono = viscid.Sphere(r=1.063, pole=-moment, ntheta=256, nphi=256, thetalim=(0, 180), philim=(0, 360), crd_system=b) _, topo_iono = viscid.calc_streamlines(b, seeds_iono, ibound=1.0, nr_procs='all', output=viscid.OUTPUT_TOPOLOGY) topo_iono = np.log2(topo_iono) m = vlab.mesh_from_seeds(seeds_iono, scalars=topo_iono, opacity=1.0, clim=(0, 3), color=(0.992, 0.445, 0.0)) m.enable_contours = True m.actor.property.line_width = 4.0 m.contour.number_of_contours = 4 #################################################################### # Plot the ionosphere, note that the sample data has the ionosphere # at a different time, so the open-closed boundary found above # will not be consistant with the field aligned currents fac_tot = 1e9 * f_iono['fac_tot'] m = vlab.plot_ionosphere(fac_tot, bounding_lat=30.0, vmin=-300, vmax=300, opacity=0.75, rotate=cotr, crd_system=b) m.actor.property.backface_culling = True ######################################################################## # Add some markers for earth, i.e., real earth, and dayside / nightside # representation vlab.plot_blue_marble(r=1.0, lines=False, ntheta=64, nphi=128, rotate=cotr, crd_system=b) # now shade the night side with a transparent black hemisphere vlab.plot_earth_3d(radius=1.01, night_only=True, opacity=0.5, crd_system=b) #################### # Finishing Touches # vlab.axes(pp_src, nb_labels=5) oa = vlab.orientation_axes() oa.marker.set_viewport(0.75, 0.75, 1.0, 1.0) # note that resize won't work if the current figure has the # off_screen_rendering flag set # vlab.resize([1200, 800]) vlab.view(azimuth=45, elevation=70, distance=35.0, focalpoint=[-2, 0, 0]) ############## # Save Figure # print("saving png") # vlab.savefig('mayavi_msphere_sample.png') # print("saving x3d") # # x3d files can be turned into COLLADA files with meshlab, and # # COLLADA (.dae) files can be opened in OS X's preview # # # # IMPORTANT: for some reason, using bounding_lat in vlab.plot_ionosphere # # causes a segfault when saving x3d files # # # vlab.savefig('mayavi_msphere_sample.x3d') # print("done") vlab.savefig(next_plot_fname(__file__)) ########################### # Interact Programatically if args.interact: vlab.interact() ####################### # Interact Graphically if args.show: vlab.show() try: vlab.mlab.close() except AttributeError: pass return 0
def main(): mhd_type = "C" make_plots = 1 mhd_type = mhd_type.upper() if mhd_type.startswith("C"): if mhd_type in ("C", ): f = viscid.load_file("$WORK/tmedium/*.3d.[-1].xdmf") elif mhd_type in ("C2", "C3"): f = viscid.load_file("$WORK/tmedium2/*.3d.[-1].xdmf") else: raise ValueError() catol = 1e-8 rtol = 2e-6 elif mhd_type in ("F", "FORTRAN"): f = viscid.load_file("$WORK/tmedium3/*.3df.[-1]") catol = 1e-8 rtol = 7e-2 else: raise ValueError() do_fill_dipole = True gslc = "x=-21.2j:12j, y=-11j:11j, z=-11j:11j" b = f['b_cc'][gslc] b1 = f['b_fc'][gslc] e_cc = f['e_cc'][gslc] e_ec = f['e_ec'][gslc] if do_fill_dipole: mask = viscid.make_spherical_mask(b, rmax=3.5) viscid.fill_dipole(b, mask=mask) mask = viscid.make_spherical_mask(b1, rmax=3.5) viscid.fill_dipole(b1, mask=mask) mask = None # seeds = viscid.SphericalCap(r=1.02, ntheta=64, nphi=32, angle0=17, angle=20, # philim=(100, 260), roll=-180.0) # seeds = viscid.SphericalCap(r=1.02, ntheta=64, nphi=32, angle0=17, angle=20, # philim=(0, 10), roll=0.0) seedsN = viscid.Sphere(r=1.02, ntheta=16, nphi=16, thetalim=(15, 25), philim=(0, 300), crd_system=b) seedsS = viscid.Sphere(r=1.02, ntheta=16, nphi=16, thetalim=(155, 165), philim=(0, 300), crd_system=b) bl_kwargs = dict(ibound=0.9, obound0=(-20, -10, -10), obound1=(11, 10, 10)) # blines_cc, topo_cc = viscid.streamlines(b, seeds, **bl_kwargs) blinesN_fc, topoN_fc = viscid.streamlines(b1, seedsN, **bl_kwargs) _, topoS_fc = viscid.streamlines(b1, seedsS, output=viscid.OUTPUT_TOPOLOGY, **bl_kwargs) if True: from viscid.plot import vlab mesh = vlab.mesh_from_seeds(seedsN, scalars=topoN_fc) mesh.actor.property.backface_culling = True # vlab.plot_lines(blines_cc, scalars="#000000", tube_radius=0.03) vlab.plot_lines(blinesN_fc, scalars=viscid.topology2color(topoN_fc), opacity=0.7) vlab.plot_blue_marble(r=1.0) vlab.plot_earth_3d(radius=1.01, crd_system=b, night_only=True, opacity=0.5) vlab.show() if True: vlt.subplot(121, projection='polar') vlt.plot(topoN_fc) vlt.subplot(122, projection='polar') vlt.plot(topoS_fc) vlt.show() return 0