コード例 #1
0
def get_model(config, args, train_dataset, device):

    # Pass vocabulary to construct Embedding layer.
    encoder = Encoder(config["model"], train_dataset.vocabulary)
    decoder = Decoder(config["model"], train_dataset.vocabulary)
    print("Encoder: {}".format(config["model"]["encoder"]))
    print("Decoder: {}".format(config["model"]["decoder"]))

    # New: Initializing word_embed using GloVe
    if "glove_npy" in config["dataset"]:
        encoder.word_embed.weight.data = torch.from_numpy(
            np.load(config["dataset"]["glove_npy"]))
        print("Loaded glove vectors from {}".format(
            config["dataset"]["glove_npy"]))

    # Share word embedding between encoder and decoder.
    if encoder.word_embed and decoder.word_embed:
        decoder.word_embed = encoder.word_embed

    # Wrap encoder and decoder in a model.
    model = EncoderDecoderModel(encoder, decoder).to(device)
    if -1 not in args.gpu_ids:
        model = nn.DataParallel(model, args.gpu_ids)
    return model
コード例 #2
0
# Pass vocabulary to construct Embedding layer.
encoder = Encoder(config["model"], val_dataset.vocabulary)
decoder = Decoder(config["model"], val_dataset.vocabulary)
print("Encoder: {}".format(config["model"]["encoder"]))
print("Decoder: {}".format(config["model"]["decoder"]))

# Share word embedding between encoder and decoder.
if args.load_pthpath == "":
    print('load glove')
    decoder.word_embed = encoder.word_embed
    glove = np.load('data/glove.npy')
    encoder.word_embed.weight.data = torch.tensor(glove)

# Wrap encoder and decoder in a model.
model = EncoderDecoderModel(encoder, decoder).to(device)
if -1 not in args.gpu_ids:
    model = nn.DataParallel(model, args.gpu_ids)

# =============================================================================
#   SETUP BEFORE TRAINING LOOP
# =============================================================================
start_time = datetime.datetime.strftime(datetime.datetime.utcnow(), '%d-%b-%Y-%H:%M:%S')

sparse_metrics = SparseGTMetrics()
ndcg = NDCG()

# loading checkpoint
start_epoch = 0
model_state_dict, _ = load_checkpoint(args.load_pthpath)
if isinstance(model, nn.DataParallel):
コード例 #3
0
)
val_dataloader = DataLoader(
    val_dataset, batch_size=config["solver"]["batch_size"], num_workers=args.cpu_workers
)

# pass vocabulary to construct nn.Embedding
encoder = Encoder(config["model"], train_dataset.vocabulary)
decoder = Decoder(config["model"], train_dataset.vocabulary)
print("Encoder: {}".format(config["model"]["encoder"]))
print("Decoder: {}".format(config["model"]["decoder"]))

# share word embedding between encoder and decoder
decoder.word_embed = encoder.word_embed

# wrap encoder and decoder in a model
model = EncoderDecoderModel(encoder, decoder).to(device)
if -1 not in args.gpu_ids:
    model = nn.DataParallel(model, args.gpu_ids)

criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=config["solver"]["initial_lr"])
scheduler = lr_scheduler.StepLR(optimizer, step_size=1, gamma=config["solver"]["lr_gamma"])


# ================================================================================================
#   SETUP BEFORE TRAINING LOOP
# ================================================================================================

summary_writer = SummaryWriter(log_dir=args.save_dirpath)
checkpoint_manager = CheckpointManager(model, optimizer, args.save_dirpath, config=config)
sparse_metrics = SparseGTMetrics()
コード例 #4
0
                             sample_flag=False)
val_dataloader = DataLoader(
    val_dataset,
    batch_size=config["solver"]["batch_size"],
    num_workers=args.cpu_workers,
)

# Pass vocabulary to construct Embedding layer.
encoder_dict = Dict_Encoder(config_dict["model"],
                            train_sample_dataset.vocabulary)
encoder = Encoder(config["model"], train_sample_dataset.vocabulary)
decoder = Decoder(config["model"], train_sample_dataset.vocabulary)
decoder.word_embed = encoder.word_embed
model_dict = encoder_dict.to(device)
# Wrap encoder and decoder in a model.
model = EncoderDecoderModel(encoder, decoder).to(device)
if -1 not in args.gpu_ids:
    model = nn.DataParallel(model, args.gpu_ids)

criterion = nn.CrossEntropyLoss()
criterion_bce = nn.BCEWithLogitsLoss()
iterations = len(train_sample_dataset) // config["solver"]["batch_size"] + 1


def lr_lambda_fun(current_iteration: int) -> float:
    """Returns a learning rate multiplier.

    Till `warmup_epochs`, learning rate linearly increases to `initial_lr`,
    and then gets multiplied by `lr_gamma` every time a milestone is crossed.
    """
    current_epoch = float(current_iteration) / iterations
コード例 #5
0
encoder = Encoder(config["model"], train_dataset.vocabulary)
if word_embedding_type == 'bert':
    decoder = Decoder(config["model"],
                      train_dataset.vocabulary,
                      bert_model=encoder.word_embed.bert)
else:
    decoder = Decoder(config["model"], train_dataset.vocabulary)
logger.info("Encoder: {}".format(config["model"]["encoder"]))
logger.info("Decoder: {}".format(config["model"]["decoder"]))

# Share word embedding between encoder and decoder.
if not word_embedding_type == 'bert':
    decoder.word_embed = encoder.word_embed

# Wrap encoder and decoder in a model.
model = EncoderDecoderModel(encoder, decoder).to(device)
if -1 not in args.gpu_ids:
    model = nn.DataParallel(model, args.gpu_ids)

# Loss function.
if config["model"]["decoder"] == "disc":
    if config["model"]["loss"] == "ce":
        criterion = nn.CrossEntropyLoss()
    elif config["model"]["loss"] == "np":
        criterion = NpairLoss(scale=0.25)
    else:
        raise NotImplementedError
elif config["model"]["decoder"] == "gen":
    criterion = nn.CrossEntropyLoss(
        ignore_index=(model.module.decoder.padding_idx if isinstance(
            model, nn.DataParallel) else model.decoder.padding_idx))
コード例 #6
0
ファイル: bot-final.py プロジェクト: sashank06/visdialciss
    config["dataset"],
    "data/visdial_1.0_val.json",
    "data/visdial_1.0_val_dense_annotations.json",
    return_options=True,
    add_boundary_toks=False
    if config["model"]["decoder"] == "disc"
    else True,
)

# Pass vocabulary to construct Embedding layer.
encoder = Encoder(config["model"], val_dataset.vocabulary)
decoder = Decoder(config["model"], val_dataset.vocabulary)
print("Encoder: {}".format(config["model"]["encoder"]))
print("Decoder: {}".format(config["model"]["decoder"]))

model = EncoderDecoderModel(encoder, decoder)
model_state_dict, _ = load_checkpoint('checkpoints/new_features_baseline/checkpoint_10.pth')
if isinstance(model, nn.DataParallel):
    model.module.load_state_dict(model_state_dict)
else:
    model.load_state_dict(model_state_dict)
model.eval()

with open('data/val_data.pkl','rb') as file:
    (img_ids, caption_vectors, all_captions, all_questions, all_questions_vectors,
    all_answers, all_questions) = pickle.load(file)
    
def jon(query, questions, answers, image_id):
    index = img_ids.index(18472.0)
    caption = all_captions[index]