コード例 #1
0
def create_cam_distribution(cam=None,
                            plane_size=(0.3, 0.3),
                            theta_params=(0, 360, 10),
                            phi_params=(0, 70, 5),
                            r_params=(0.25, 1.0, 4),
                            plot=False):
    if cam == None:
        # Create an initial camera on the center of the world
        cam = Camera()
        f = 800
        cam.set_K(fx=f, fy=f, cx=320, cy=240)  #Camera Matrix
        cam.img_width = 320 * 2
        cam.img_height = 240 * 2

    # we create a default plane with 4 points with a side lenght of w (meters)
    plane = Plane(origin=np.array([0, 0, 0]),
                  normal=np.array([0, 0, 1]),
                  size=plane_size,
                  n=(2, 2))
    #We extend the size of this plane to account for the deviation from a uniform pattern
    #plane.size = (plane.size[0] + deviation, plane.size[1] + deviation)

    d_space = np.linspace(r_params[0], r_params[1], r_params[2])
    t_list = []
    for d in d_space:
        xx, yy, zz = uniform_sphere(theta_params, phi_params, d, False)
        sphere_points = np.array(
            [xx.ravel(), yy.ravel(), zz.ravel()], dtype=np.float32)
        t_list.append(sphere_points)
    t_space = np.hstack(t_list)

    cams = []
    for t in t_space.T:
        cam = cam.clone()
        cam.set_t(-t[0], -t[1], -t[2])
        cam.set_R_mat(R_matrix_from_euler_t(0.0, 0, 0))
        cam.look_at([0, 0, 0])

        plane.set_origin(np.array([0, 0, 0]))
        plane.uniform()
        objectPoints = plane.get_points()
        imagePoints = cam.project(objectPoints)

        #if plot:
        #  cam.plot_image(imagePoints)
        if ((imagePoints[0, :] < cam.img_width) &
            (imagePoints[0, :] > 0)).all():
            if ((imagePoints[1, :] < cam.img_height) &
                (imagePoints[1, :] > 0)).all():
                cams.append(cam)

    if plot:
        planes = []
        plane.uniform()
        planes.append(plane)
        plot3D(cams, planes)

    return cams
コード例 #2
0
def getCondNum_camPoseInRealWord(x_w, y_w, grid_reso, width, height):
    """
    Compute the condition number of camera position in real world coordinate
    :param x_w: camera potion in real world coordinate
    :param y_w: camera potion in real world coordinate
    :param width: gird 60
    :param height: grid 30
    :return:
    """
    # width = int(grid_width/ grid_reso)
    # height = int(grid_height/ grid_reso)
    T_WM = getMarkerTransformationMatrix(width, height, grid_reso)
    pos_world_homo = np.array([x_w, y_w, 0, 1])
    pos_marker = np.dot(T_WM, pos_world_homo)

    ## CREATE A SIMULATED CAMERA
    cam = Camera()
    cam.set_K(fx=800, fy=800, cx=640 / 2., cy=480 / 2.)
    cam.set_width_heigth(640, 480)

    cam.set_t(pos_marker[0], pos_marker[1], pos_marker[2], 'world')
    cam.set_R_mat(Rt_matrix_from_euler_t.R_matrix_from_euler_t(0.0, 0, 0))
    cam.look_at([0, 0, 0])

    radius = np.sqrt(pos_marker[0]**2 + pos_marker[1]**2 + pos_marker[2]**2)
    angle = np.rad2deg(np.arccos(pos_marker[1] / radius))
    cam.set_radius(radius)
    cam.set_angle(angle)
    objectPoints = np.copy(new_objectPoints)
    imagePoints = np.array(cam.project(objectPoints, False))

    condNum = np.inf  # undetected region set as 0
    if ((imagePoints[0, :] < cam.img_width) & (imagePoints[0, :] > 0) &
        (imagePoints[1, :] < cam.img_height) & (imagePoints[1, :] > 0)).all():
        input_list = gd.extract_objectpoints_vars(objectPoints)
        input_list.append(np.array(cam.K))
        input_list.append(np.array(cam.R))
        input_list.append(cam.t[0, 3])
        input_list.append(cam.t[1, 3])
        input_list.append(cam.t[2, 3])
        input_list.append(cam.radius)
        # TODO normalize points!!!   set normalize as default True
        condNum = gd.matrix_condition_number_autograd(*input_list,
                                                      normalize=True)

    return condNum
コード例 #3
0
def getT_MC_and_Rt_errors(T_WM, pos_world, Rmat_error_loop, tvec_error_loop):
    pos_world_homo = np.array([pos_world[0], pos_world[1], 0, 1])
    pos_marker = np.dot(T_WM, pos_world_homo)
    # print "pos_marker\n", pos_marker

    # Create an initial camera on the center of the world
    cam = Camera()
    f = 800
    cam.set_K(fx=f, fy=f, cx=320, cy=240)  # Camera Matrix
    cam.img_width = 320 * 2
    cam.img_height = 240 * 2
    cam = cam.clone()
    cam.set_t(pos_marker[0], pos_marker[1], pos_marker[2], 'world')
    cam.set_R_mat(Rt_matrix_from_euler_t.R_matrix_from_euler_t(0.0, 0, 0))
    # print "cam.R\n",cam.R
    cam.look_at([0, 0, 0])
    # print "cam.Rt after look at\n",cam.R
    objectPoints = np.copy(new_objectPoints)
    imagePoints = np.array(cam.project(objectPoints, False))
    new_imagePoints = np.copy(imagePoints)
    # -----------------------------------------------------------------
    new_imagePoints_noisy = cam.addnoise_imagePoints(new_imagePoints,
                                                     mean=0,
                                                     sd=4)
    # print "new_imagePoints_noisy\n",new_imagePoints_noisy
    debug = False
    # TODO  cv2.SOLVEPNP_DLS, cv2.SOLVEPNP_EPNP, cv2.SOLVEPNP_ITERATIVE
    pnp_tvec, pnp_rmat = pose_pnp(new_objectPoints, new_imagePoints_noisy,
                                  cam.K, debug, cv2.SOLVEPNP_ITERATIVE, False)

    # Calculate errors
    Cam_clone_cv2 = cam.clone_withPose(pnp_tvec, pnp_rmat)
    tvec_error, Rmat_error = ef.calc_estimated_pose_error(
        cam.get_tvec(), cam.R, Cam_clone_cv2.get_tvec(), pnp_rmat)
    Rmat_error_loop.append(Rmat_error)
    tvec_error_loop.append(tvec_error)

    # print "cam.get_world_position()\n",cam.get_world_position()
    t = np.eye(4)
    t[:3, 3] = pnp_tvec[:3]
    T_MC = np.dot(t, pnp_rmat)
    return T_MC
コード例 #4
0
cam.set_width_heigth(640, 480)

## DEFINE CAMERA POSE LOOKING STRAIGTH DOWN INTO THE PLANE MODEL
cam.set_R_axisAngle(1.0, 0.0, 0.0, np.deg2rad(180.0))
cam.set_t(0.0, -0.0, 0.5, frame='world')

#cam.set_R_axisAngle(1.0,  0.0,  0.0, np.deg2rad(140.0))
#cam.set_t(0.0,-1,1.0, frame='world')
#
r = 0.8
angle = 30
x = r * np.cos(np.deg2rad(angle))
z = r * np.sin(np.deg2rad(angle))
cam.set_t(0, x, z)
cam.set_R_mat(R_matrix_from_euler_t(0.0, 0, 0))
cam.look_at([0, 0, 0])

#cam.set_R_axisAngle(1.0,  0.0,  0.0, np.deg2rad(110.0))
#cam.set_t(0.0,-0.3,0.1, frame='world')

new_objectPoints = pl.get_points()
#GOOD SET OF POINTS FOR THE GRAPHIC
#new_objectPoints = np.array([[ 0.075, -0.06,   0.06,  -0.06 ],
# [ 0.105,  0.105,  0.105,  0.09 ],
# [ 0.,     0.,     0.,     0.,   ],
# [ 1.,     1.,     1.,     1.,   ]])

new_objectPoints = np.array([[0.12, 0.06, -0.105, 0.105],
                             [0.015, -0.12, -0.09, -0.09], [
                                 0.,
                                 0.,