def create_mb_tiny_fd_predictor(net, candidate_size=200, nms_method=None, sigma=0.5, device=None):
    predictor = Predictor(net, config.image_size, config.image_mean_test,
                          config.image_std,
                          nms_method=nms_method,
                          iou_threshold=config.iou_threshold,
                          candidate_size=candidate_size,
                          sigma=sigma,
                          device=device)
    return predictor
コード例 #2
0
def create_mobilenetv2_ssd_lite_predictor(net, candidate_size=200, nms_method=None, sigma=0.5, device=torch.device('cpu')):
    predictor = Predictor(net, config.image_size, config.image_mean,
                          config.image_std,
                          nms_method=nms_method,
                          iou_threshold=config.iou_threshold,
                          candidate_size=candidate_size,
                          sigma=sigma,
                          device=device)
    return predictor
def create_mb_tiny_fd_predictor(net,
                                model_path=None,
                                candidate_size=200,
                                nms_method=None,
                                sigma=0.5,
                                device=None,
                                fuse=False):
    predictor = Predictor(net,
                          config,
                          model_path=model_path,
                          nms_method=nms_method,
                          candidate_size=candidate_size,
                          sigma=sigma,
                          device=device,
                          fuse=fuse)
    return predictor
コード例 #4
0
# if net_type == 'vgg16-ssd':
#     predictor = create_vgg_ssd_predictor(net, candidate_size=200)
# elif net_type == 'mb1-ssd':
#     predictor = create_mobilenetv1_ssd_predictor(net, candidate_size=200)
# elif net_type == 'mb1-ssd-lite':
#     predictor = create_mobilenetv1_ssd_lite_predictor(net, candidate_size=200)
# elif net_type == 'mb2-ssd-lite':
#     predictor = create_mobilenetv2_ssd_lite_predictor(net, candidate_size=200)
# elif net_type == 'sq-ssd-lite':
#     predictor = create_squeezenet_ssd_lite_predictor(net, candidate_size=200)
# elif net_type == 'resnet-18':
#     predictor = create_resnet18_ssd_predictor(net, candidate_size=200)
# if net_type == 'lstm-ssd':
predictor = Predictor(net, config.image_size, config.image_mean,
                          config.image_std,
                          nms_method=None,
                          iou_threshold=config.iou_threshold,
                          candidate_size=200,
                          sigma=None)


dir_path = './data/sample/'
imgs = []
for img_name in os.listdir(dir_path):
    img_path = os.path.join(dir_path, img_name)
    print(img_path)
    img = cv2.imread(img_path)
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    imgs.append(img)


video = np.array(imgs)