from vision import * from vision.track import dp from vision import visualize import os import logging import multiprocessing logging.basicConfig(level=logging.INFO) name = "VIRAT_S_040104_05_000939_001116" root = os.path.dirname(os.path.abspath(__file__)) #iter = frameiterator("/scratch/virat/frames/{0}".format(name)) iter = frameiterator("/scratch/vatic/uci-basketball") #start = Box(234, 115, 234 + 72, 115 + 44, 0) #start = Box(434, 184, 434 + 112, 184 + 75, 0) start = Box(492, 254, 492 + 16, 254 + 18, 20315) stop = Box(510, 270, 510 + 16, 270 + 18, 20385) #stop = 20385 given = [start, stop] pool = multiprocessing.Pool(24) predicted = dp.fill(given, iter, pool=pool, pairwisecost=1.0, c=100) vit = visualize.highlight_path(iter, predicted) visualize.save(vit, lambda x: "tmp/path{0}.jpg".format(x))
id = "toy" pool = multiprocessing.Pool(24) root = os.path.dirname(os.path.abspath(__file__)) for _ in range(1): print "Given frames are:", ", ".join(str(x.frame) for x in given) print "Simulating with {0} clicks".format(len(given)) askingfor = alearn.pick(g, given, pool=pool, skip=1, bgskip=10, bgsize=5e3, plot="tmp/", errortube=100000) print "Requested frame {0}".format(askingfor) print "Visualizing path with {0} clicks".format(len(given)) vit = visualize.highlight_path(g, interpolation.LinearFill(given)) base = "{0}/visualize/{1}/clicks{2}/wants{3}".format( root, id, len(given), askingfor) try: os.makedirs(base) except: pass visualize.save(vit, lambda x: "{0}/{1}.jpg".format(base, x)) given.append(pathdict[askingfor]) given.sort(key=lambda x: x.frame)
logging.basicConfig(level = logging.INFO) root = os.path.dirname(os.path.abspath(__file__)) g = Geppetto() b = Rectangle() b = b.linear((300,300), 10) b = b.linear((0,300), 20) b = b.linear((300,0), 30) g.add(b) path = b.groundtruth() pathdict = dict((x.frame, x) for x in path) start = 0 stop = len(g) - 1 given = [pathdict[start], pathdict[stop]] svm = model.PathModel(g, given) predicted = dp.track(given[0], given[-1], svm, g, pairwisecost = 0.000001) vit = visualize.highlight_path(g, predicted) base = "tmp" try: os.makedirs(base) except: pass visualize.save(vit, lambda x: "{0}/{1}.jpg".format(base, x))
given = [pathdict[start], pathdict[stop]] for _ in range(20): print "Given frames are:", ", ".join(str(x.frame) for x in given) print "Simulating with {0} clicks".format(len(given)) base = "{0}/visualize/{1}/clicks{2}/tmp".format(root, id, len(given)) try: os.makedirs(base) except: pass askingfor = alearn.pick(iter, given, pool = pool, skip = 1, bgskip = 3, bgsize = 5e5, errortube = 100000, plot = base) print "Requested frame {0}".format(askingfor) print "Visualizing path with {0} clicks".format(len(given)) vit = visualize.highlight_path(iter, interpolation.LinearFill(given)) base = "{0}/visualize/{1}/clicks{2}/wants{3}".format(root, id, len(given), askingfor) try: os.makedirs(base) except: pass visualize.save(vit, lambda x: "{0}/{1}.jpg".format(base, x)) given.append(pathdict[askingfor]) given.sort(key = lambda x: x.frame)
from vision import * from vision.track import dp from vision import visualize import os import logging import multiprocessing logging.basicConfig(level = logging.INFO) name = "VIRAT_S_040104_05_000939_001116" root = os.path.dirname(os.path.abspath(__file__)) #iter = frameiterator("/scratch/virat/frames/{0}".format(name)) iter = frameiterator("/scratch/vatic/uci-basketball") #start = Box(234, 115, 234 + 72, 115 + 44, 0) #start = Box(434, 184, 434 + 112, 184 + 75, 0) start = Box(492, 254, 492 + 16, 254 + 18, 20315) stop = Box(510, 270, 510 + 16, 270 + 18, 20385) #stop = 20385 given = [start, stop] pool = multiprocessing.Pool(24) predicted = dp.fill(given, iter, pool = pool, pairwisecost = 1.0, c = 100) vit = visualize.highlight_path(iter, predicted) visualize.save(vit, lambda x: "tmp/path{0}.jpg".format(x))