def calluser(): availableOperations = [] tokenString = '' equationTokens = [] self.resultOut = True if name == 'addition': if self.solutionType == 'expression': self.tokens, availableOperations, tokenString, equationTokens, comments = addition( self.tokens, True) else: self.lTokens, self.rTokens, availableOperations, tokenString, equationTokens, comments = additionEquation( self.lTokens, self.rTokens, True) elif name == 'subtraction': if self.solutionType == 'expression': self.tokens, availableOperations, tokenString, equationTokens, comments = subtraction( self.tokens, True) else: self.lTokens, self.rTokens, availableOperations, tokenString, equationTokens, comments = subtractionEquation( self.lTokens, self.rTokens, True) elif name == 'multiplication': if self.solutionType == 'expression': self.tokens, availableOperations, tokenString, equationTokens, comments = multiplication( self.tokens, True) else: self.lTokens, self.rTokens, availableOperations, tokenString, equationTokens, comments = multiplicationEquation( self.lTokens, self.rTokens, True) elif name == 'division': if self.solutionType == 'expression': self.tokens, availableOperations, tokenString, equationTokens, comments = division( self.tokens, True) else: self.lTokens, self.rTokens, availableOperations, tokenString, equationTokens, comments = divisionEquation( self.lTokens, self.rTokens, True) elif name == 'simplify': if self.solutionType == 'expression': self.tokens, availableOperations, tokenString, equationTokens, comments = simplify( self.tokens) else: self.lTokens, self.rTokens, availableOperations, tokenString, equationTokens, comments = simplifyEquation( self.lTokens, self.rTokens) elif name == 'factorize': self.tokens, availableOperations, tokenString, equationTokens, comments = factorize( self.tokens) elif name == 'find roots': self.lTokens, self.rTokens, availableOperations, tokenString, equationTokens, comments = quadraticRoots( self.lTokens, self.rTokens) elif name == 'solve': lhs, rhs = getLHSandRHS(self.tokens) variables = getVariables(lhs, rhs) self.wrtVariableButtons(variables, name) self.resultOut = False elif name == 'integrate': lhs, rhs = getLHSandRHS(self.tokens) variables = getVariables(lhs, rhs) self.wrtVariableButtons(variables, name) self.resultOut = False elif name == 'differentiate': lhs, rhs = getLHSandRHS(self.tokens) variables = getVariables(lhs, rhs) self.wrtVariableButtons(variables, name) self.resultOut = False if self.resultOut: self.eqToks = equationTokens self.output = resultLatex(name, equationTokens, comments) if len(availableOperations) == 0: self.clearButtons() else: self.refreshButtons(availableOperations) if self.mode == 'normal': self.textedit.setText(tokenString) elif self.mode == 'interaction': cursor = self.textedit.textCursor() cursor.insertText(tokenString) if self.showStepByStep is True: showSteps(self) if self.showPlotter is True: plot(self)
def calluser(): availableOperations = [] tokenString = '' equationTokens = [] self.resultOut = True if not self.matrix: """ This part handles the cases when VisMa is NOT dealing with matrices. Boolean flags used in code below: simul -- {True} when VisMa is dealing with simultaneous equations & {False} in all other cases """ if name == 'addition': if self.solutionType == 'expression': self.tokens, availableOperations, tokenString, equationTokens, comments = addition( self.tokens, True) else: self.lTokens, self.rTokens, availableOperations, tokenString, equationTokens, comments = additionEquation( self.lTokens, self.rTokens, True) elif name == 'subtraction': if self.solutionType == 'expression': self.tokens, availableOperations, tokenString, equationTokens, comments = subtraction( self.tokens, True) else: self.lTokens, self.rTokens, availableOperations, tokenString, equationTokens, comments = subtractionEquation( self.lTokens, self.rTokens, True) elif name == 'multiplication': if self.solutionType == 'expression': self.tokens, availableOperations, tokenString, equationTokens, comments = multiplication( self.tokens, True) else: self.lTokens, self.rTokens, availableOperations, tokenString, equationTokens, comments = multiplicationEquation( self.lTokens, self.rTokens, True) elif name == 'division': if self.solutionType == 'expression': self.tokens, availableOperations, tokenString, equationTokens, comments = division( self.tokens, True) else: self.lTokens, self.rTokens, availableOperations, tokenString, equationTokens, comments = divisionEquation( self.lTokens, self.rTokens, True) elif name == 'simplify': if self.solutionType == 'expression': self.tokens, availableOperations, tokenString, equationTokens, comments = simplify(self.tokens) else: self.lTokens, self.rTokens, availableOperations, tokenString, equationTokens, comments = simplifyEquation(self.lTokens, self.rTokens) elif name == 'factorize': self.tokens, availableOperations, tokenString, equationTokens, comments = factorize(self.tokens) elif name == 'find roots': self.lTokens, self.rTokens, availableOperations, tokenString, equationTokens, comments = rootFinder(self.lTokens, self.rTokens) elif name == 'solve': if not self.simul: lhs, rhs = getLHSandRHS(self.tokens) variables = getVariables(lhs, rhs) else: variables = getVariableSim(self.tokens) self.wrtVariableButtons(variables, name) self.resultOut = False elif name == 'factorial': self.tokens, availableOperations, tokenString, equationTokens, comments = factorial(self.tokens) elif name == 'combination': nTokens = self.tokens[0] rTokens = self.tokens[1] self.tokens, _, _, equationTokens, comments = combination(nTokens, rTokens) elif name == 'permutation': nTokens = self.tokens[0] rTokens = self.tokens[1] self.tokens, _, _, equationTokens, comments = permutation(nTokens, rTokens) elif name == 'integrate': lhs, rhs = getLHSandRHS(self.tokens) variables = getVariables(lhs, rhs) self.wrtVariableButtons(variables, name) self.resultOut = False elif name == 'differentiate': lhs, rhs = getLHSandRHS(self.tokens) variables = getVariables(lhs, rhs) self.wrtVariableButtons(variables, name) self.resultOut = False else: """ This part handles the cases when VisMa is dealing with matrices. Boolean flags used in code below: dualOperand -- {True} when the matrix operations require two operands (used in operations like addition, subtraction etc) nonMatrixResult -- {True} when the result after performing operations on the Matrix is not a Matrix (in operations like Determinant, Trace etc.) scalarOperations -- {True} when one of the operand in a scalar (used in operations like Scalar Addition, Scalar Subtraction etc.) """ # TODO: use latex tools like /amsmath for displaying matrices if self.dualOperandMatrix: Matrix1_copy = copy.deepcopy(self.Matrix1) Matrix2_copy = copy.deepcopy(self.Matrix2) else: Matrix0_copy = copy.deepcopy(self.Matrix0) if name == 'Addition': MatrixResult = addMatrix(self.Matrix1, self.Matrix2) elif name == 'Subtraction': MatrixResult = subMatrix(self.Matrix1, self.Matrix2) elif name == 'Multiply': MatrixResult = multiplyMatrix(self.Matrix1, self.Matrix2) elif name == 'Simplify': MatrixResult = simplifyMatrix(self.Matrix0) elif name == 'Trace': sqMatrix = SquareMat() sqMatrix.value = self.Matrix0.value result = sqMatrix.traceMat() elif name == 'Determinant': sqMatrix = SquareMat() sqMatrix.value = self.Matrix0.value result = sqMatrix.determinant() elif name == 'Inverse': sqMatrix = SquareMat() sqMatrix.value = self.Matrix0.value MatrixResult = SquareMat() MatrixResult = sqMatrix.inverse() if name in ['Addition', 'Subtraction', 'Multiply']: self.dualOperandMatrix = True else: self.dualOperandMatrix = False if name in ['Determinant', 'Trace']: self.nonMatrixResult = True else: self.nonMatrixResult = False if self.resultOut: if not self.matrix: self.eqToks = equationTokens self.output = resultLatex(equationTokens, name, comments, self.solutionType) if (mathError(self.eqToks[-1])): self.output += 'Math Error: LHS not equal to RHS' + '\n' if len(availableOperations) == 0: self.clearButtons() else: self.refreshButtons(availableOperations) if self.mode == 'normal': self.textedit.setText(tokenString) elif self.mode == 'interaction': cursor = self.textedit.textCursor() cursor.insertText(tokenString) if self.showStepByStep is True: showSteps(self) if self.showPlotter is True: plot(self) else: if self.dualOperandMatrix: if not self.scalarOperationsMatrix: self.output = resultMatrixStringLatex(operation=name, operand1=Matrix1_copy, operand2=Matrix2_copy, result=MatrixResult) else: # TODO: Implement Scalar Matrices operations. pass # finalCLIstring = resultMatrix_Latex(operation=name, operand1=scalarTokens_copy, operand2=Matrix2_copy, result=MatrixResult) else: if self.nonMatrixResult: self.output = resultMatrixStringLatex(operation=name, operand1=Matrix0_copy, nonMatrixResult=True, result=result) else: self.output = resultMatrixStringLatex(operation=name, operand1=Matrix0_copy, result=MatrixResult) if self.mode == 'normal': self.textedit.setText(tokenString) elif self.mode == 'interaction': cursor = self.textedit.textCursor() cursor.insertText(tokenString) if self.showStepByStep is True: showSteps(self)
def commandExec(command): operation = command.split('(', 1)[0] inputEquation = command.split('(', 1)[1][:-1] if ',' in inputEquation: varName = inputEquation.split(',')[1] inputEquation = inputEquation.split(',')[0] lhs = [] rhs = [] solutionType = '' lTokens = [] rTokens = [] equationTokens = [] comments = [] tokens = tokenizer(inputEquation) lhs, rhs = getLHSandRHS(tokens) lTokens = lhs rTokens = rhs _, solutionType = checkTypes(lhs, rhs) if operation == 'simplify': if solutionType == 'expression': tokens, _, _, equationTokens, comments = simplify(tokens) else: lTokens, rTokens, _, _, equationTokens, comments = simplifyEquation( lTokens, rTokens) elif operation == 'addition': if solutionType == 'expression': tokens, _, _, equationTokens, comments = addition(tokens, True) else: lTokens, rTokens, _, _, equationTokens, comments = additionEquation( lTokens, rTokens, True) elif operation == 'subtraction': if solutionType == 'expression': tokens, _, _, equationTokens, comments = subtraction(tokens, True) else: lTokens, rTokens, _, _, equationTokens, comments = subtractionEquation( lTokens, rTokens, True) elif operation == 'multiplication': if solutionType == 'expression': tokens, _, _, equationTokens, comments = multiplication( tokens, True) else: lTokens, rTokens, _, _, equationTokens, comments = multiplicationEquation( lTokens, rTokens, True) elif operation == 'division': if solutionType == 'expression': tokens, _, _, equationTokens, comments = division(tokens, True) else: lTokens, rTokens, _, _, equationTokens, comments = divisionEquation( lTokens, rTokens, True) elif operation == 'simplify': if solutionType == 'expression': tokens, _, _, equationTokens, comments = simplify(tokens) else: lTokens, rTokens, _, _, equationTokens, comments = simplifyEquation( lTokens, rTokens) elif operation == 'factorize': tokens, _, _, equationTokens, comments = factorize(tokens) elif operation == 'find-roots': lTokens, rTokens, _, _, equationTokens, comments = quadraticRoots( lTokens, rTokens) elif operation == 'solve': lhs, rhs = getLHSandRHS(tokens) lTokens, rTokens, _, _, equationTokens, comments = solveFor( lTokens, rTokens, varName) elif operation == 'integrate': lhs, rhs = getLHSandRHS(tokens) lTokens, _, _, equationTokens, comments = integrate(lTokens, varName) elif operation == 'differentiate': lhs, rhs = getLHSandRHS(tokens) lTokens, _, _, equationTokens, comments = differentiate( lTokens, varName) printOnCLI(equationTokens, operation, comments)
def commandExec(command): operation = command.split('(', 1)[0] inputEquation = command.split('(', 1)[1][:-1] matrix = False # True when matrices operations are present in the code. if operation[0:4] == 'mat_': matrix = True if not matrix: """ This part handles the cases when VisMa is NOT dealing with matrices. Boolean flags used in code below: simul -- {True} when VisMa is dealing with simultaneous equations & {False} in all other cases """ varName = None if ',' in inputEquation: varName = inputEquation.split(',')[1] varName = "".join(varName.split()) inputEquation = inputEquation.split(',')[0] simul = False # True when simultaneous equation is present if (inputEquation.count(';') == 2) and (operation == 'solve'): simul = True afterSplit = inputEquation.split(';') eqStr1 = afterSplit[0] eqStr2 = afterSplit[1] eqStr3 = afterSplit[2] lhs = [] rhs = [] solutionType = '' lTokens = [] rTokens = [] equationTokens = [] comments = [] if simul: tokens = [tokenizer(eqStr1), tokenizer(eqStr2), tokenizer(eqStr3)] else: tokens = tokenizer(inputEquation) if '=' in inputEquation: lhs, rhs = getLHSandRHS(tokens) lTokens = lhs rTokens = rhs _, solutionType = checkTypes(lhs, rhs) else: solutionType = 'expression' lhs, rhs = getLHSandRHS(tokens) lTokens = lhs rTokens = rhs if operation == 'plot': app = QApplication(sys.argv) App(tokens) sys.exit(app.exec_()) elif operation == 'simplify': if solutionType == 'expression': tokens, _, _, equationTokens, comments = simplify(tokens) else: lTokens, rTokens, _, _, equationTokens, comments = simplifyEquation( lTokens, rTokens) elif operation == 'addition': if solutionType == 'expression': tokens, _, _, equationTokens, comments = addition(tokens, True) else: lTokens, rTokens, _, _, equationTokens, comments = additionEquation( lTokens, rTokens, True) elif operation == 'subtraction': if solutionType == 'expression': tokens, _, _, equationTokens, comments = subtraction( tokens, True) else: lTokens, rTokens, _, _, equationTokens, comments = subtractionEquation( lTokens, rTokens, True) elif operation == 'multiplication': if solutionType == 'expression': tokens, _, _, equationTokens, comments = multiplication( tokens, True) else: lTokens, rTokens, _, _, equationTokens, comments = multiplicationEquation( lTokens, rTokens, True) elif operation == 'division': if solutionType == 'expression': tokens, _, _, equationTokens, comments = division(tokens, True) else: lTokens, rTokens, _, _, equationTokens, comments = divisionEquation( lTokens, rTokens, True) elif operation == 'factorize': tokens, _, _, equationTokens, comments = factorize(tokens) elif operation == 'find-roots': lTokens, rTokens, _, _, equationTokens, comments = rootFinder( lTokens, rTokens) elif operation == 'solve': if simul: if varName is not None: _, equationTokens, comments = simulSolver( tokens[0], tokens[1], tokens[2], varName) else: _, equationTokens, comments = simulSolver( tokens[0], tokens[1], tokens[2]) solutionType = equationTokens else: lhs, rhs = getLHSandRHS(tokens) lTokens, rTokens, _, _, equationTokens, comments = solveFor( lTokens, rTokens, varName) elif operation == 'factorial': tokens, _, _, equationTokens, comments = factorial(tokens) elif operation == 'combination': n = tokenizer(inputEquation) r = tokenizer(varName) tokens, _, _, equationTokens, comments = combination(n, r) elif operation == 'permutation': n = tokenizer(inputEquation) r = tokenizer(varName) tokens, _, _, equationTokens, comments = permutation(n, r) elif operation == 'integrate': lhs, rhs = getLHSandRHS(tokens) lTokens, _, _, equationTokens, comments = integrate( lTokens, varName) elif operation == 'differentiate': lhs, rhs = getLHSandRHS(tokens) lTokens, _, _, equationTokens, comments = differentiate( lTokens, varName) if operation != 'plot': # FIXME: when either plotting window or GUI window is opened from CLI and after it is closed entire CLI exits, it would be better if it is avoided final_string = resultStringCLI(equationTokens, operation, comments, solutionType, simul) print(final_string) else: """ This part handles the cases when VisMa is dealing with matrices. Boolean flags used in code below: dualOperand -- {True} when the matrix operations require two operands (used in operations like addition, subtraction etc) nonMatrixResult -- {True} when the result after performing operations on the Matrix is not a Matrix (in operations like Determinant, Trace etc.) scalarOperations -- {True} when one of the operand in a scalar (used in operations like Scalar Addition, Scalar Subtraction etc.) """ operation = operation[4:] dualOperand = False nonMatrixResult = False scalarOperations = False if ', ' in inputEquation: dualOperand = True [inputEquation1, inputEquation2] = inputEquation.split(', ') if '[' in inputEquation1: inputEquation1 = inputEquation1[1:][:-1] inputEquation1 = inputEquation1.split('; ') matrixOperand1 = [] for row in inputEquation1: row1 = row.split(' ') for i, _ in enumerate(row1): row1[i] = tokenizer(row1[i]) matrixOperand1.append(row1) Matrix1 = Matrix() Matrix1.value = matrixOperand1 inputEquation2 = inputEquation2[1:][:-1] inputEquation2 = inputEquation2.split('; ') matrixOperand2 = [] for row in inputEquation2: row1 = row.split(' ') for i, _ in enumerate(row1): row1[i] = tokenizer(row1[i]) matrixOperand2.append(row1) Matrix2 = Matrix() Matrix2.value = matrixOperand2 Matrix1_copy = copy.deepcopy(Matrix1) Matrix2_copy = copy.deepcopy(Matrix2) else: scalarOperations = True scalar = inputEquation1 scalarTokens = scalar # scalarTokens = tokenizer(scalar) inputEquation2 = inputEquation2[1:][:-1] inputEquation2 = inputEquation2.split('; ') matrixOperand2 = [] for row in inputEquation2: row1 = row.split(' ') for i, _ in enumerate(row1): row1[i] = tokenizer(row1[i]) matrixOperand2.append(row1) Matrix2 = Matrix() Matrix2.value = matrixOperand2 scalarTokens_copy = copy.deepcopy(scalarTokens) Matrix2_copy = copy.deepcopy(Matrix2) else: inputEquation = inputEquation[1:][:-1] inputEquation = inputEquation.split('; ') matrixOperand = [] for row in inputEquation: row1 = row.split(' ') for i, _ in enumerate(row1): row1[i] = tokenizer(row1[i]) matrixOperand.append(row1) Matrix0 = Matrix() Matrix0.value = matrixOperand Matrix0_copy = copy.deepcopy(Matrix0) if operation == 'simplify': MatrixResult = simplifyMatrix(Matrix0) elif operation == 'add': MatrixResult = addMatrix(Matrix1, Matrix2) elif operation == 'sub': MatrixResult = subMatrix(Matrix1, Matrix2) elif operation == 'mult': MatrixResult = multiplyMatrix(Matrix1, Matrix2) elif operation == 'determinant': nonMatrixResult = True sqMatrix = SquareMat() sqMatrix.value = Matrix0.value result = sqMatrix.determinant() elif operation == 'trace': nonMatrixResult = True sqMatrix = SquareMat() sqMatrix.value = Matrix0.value result = sqMatrix.traceMat() elif operation == 'inverse': sqMatrix = SquareMat() sqMatrix.value = Matrix0.value MatrixResult = SquareMat() MatrixResult = sqMatrix.inverse() finalCLIstring = '' if dualOperand: if not scalarOperations: finalCLIstring = resultMatrixString(operation=operation, operand1=Matrix1_copy, operand2=Matrix2_copy, result=MatrixResult) else: finalCLIstring = resultMatrixString(operation=operation, operand1=scalarTokens_copy, operand2=Matrix2_copy, result=MatrixResult) else: if nonMatrixResult: finalCLIstring = resultMatrixString(operation=operation, operand1=Matrix0_copy, nonMatrixResult=True, result=result) else: finalCLIstring = resultMatrixString(operation=operation, operand1=Matrix0_copy, result=MatrixResult) print(finalCLIstring)