コード例 #1
0
		frame = cv2.undistort(frame, mtx, dist)
		#frame = cv2.resize(frame, (0, 0), fx=0.5, fy=0.5)
		frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

		# run visual odometry
		vo.update(frame)

		if init:
			x, y, z, = 0., 0., 0.
			dt = time.time() - t

			init = False

		else:
			vo.scale = 0.088152 	#Median from scale tests
			dt = time.time() - t
			cur_t = drone_states.R_cd.dot(vo.cur_t)
			roll, pitch, yaw = rotationMatrixToEulerAngles(vo.cur_R)
			x, y, z = cur_t[0, 0], cur_t[1, 0], cur_t[2, 0]

			keypoints = []
			for m in vo.good:
				keypoints.append(vo.kp_cur[m.trainIdx])
			frame = cv2.drawKeypoints(frame, keypoints, np.array([]), color=(0, 255, 0), flags=0)

		draw_x, draw_y = int(x) + 290, int(y) + 290
		cv2.circle(traj, (draw_x, draw_y), 1, (0, 255, 0), 1)
		cv2.rectangle(traj, (10, 20), (650, 60), (0, 0, 0), -1)
		text = "Coordinates: x=%2fm y=%2fm z=%2fm fps: %f" % (x, y, z, 1 / dt)
		cv2.putText(traj, text, (20, 40), cv2.FONT_HERSHEY_PLAIN, 1, (255, 255, 255), 1, 8)
コード例 #2
0
 for img_id in range(0, len(X)):
         img = cv2.imread('/Users/farhantoddywala/desktop/dataset/sequences/06/image_0/'+str(img_id).zfill(6)+'.png', 0)
         #img = cv2.resize(img, (620,188))
         #print(img[0][0])
         #print(img.shape)
         #rand = np.random.randint(low = -1, high = 2)
         #noise_std = min(max(noise_std + rand, 0), upper)
         img = img + np.random.normal(loc = 0, scale = noise_std, size = img.shape)
         img[img > 255] = 255
         img[img < 0] = 0
         img = img.astype("uint8")
         #print(img.shape)
         #img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
         if (img_id > 0):
                 scale = np.linalg.norm(X[img_id][:,3] - X[img_id - 1][:,3])
         vo.scale = scale
         vo.update(img, img_id)
         cur_t = vo.cur_t
         kp = len(vo.detector.detect(img))
         #print(kp)
         if (dynamic == 1):
             if (kp > high):
                     vo.detector = cv2.FastFeatureDetector_create((int)(vo.detector.getThreshold() * increase_rate), nonmaxSuppression=True)
             if (kp < low):
                     vo.detector = cv2.FastFeatureDetector_create((int)(vo.detector.getThreshold() * decrease_rate), nonmaxSuppression=True)
         if(img_id > 0):
                 x, y, z = cur_t[0], cur_t[1], cur_t[2]
         else:
                 x, y, z = 0., 0., 0.
         draw_x, draw_y = int(x) // 5 +180, int(z)//5 +270
         true_x, true_y = (int)(X[img_id][:,3][0]) // 5 + 180, (int)(X[img_id][:,3][2]) // 5 + 270