コード例 #1
0
 def __init__(self, vis_screen):
     self.viz = VisdomPlotter(env_name=vis_screen)
     self.hist_D = []
     self.hist_G = []
     self.hist_E = []
     self.hist_Dx = []
     self.hist_DGx = []
コード例 #2
0
 def __init__(self, vis_screen, save_path):
     self.viz = VisdomPlotter(env_name=vis_screen)
     self.hist_D = []
     self.hist_G = []
     self.hist_Dx = []
     self.hist_DGx = []
     self.logger = logging.getLogger('lossesLogger')
     self.logFile = os.path.join('logs', save_path)
     if not os.path.exists(self.logFile):
         os.makedirs(self.logFile)
     handler = logging.FileHandler(self.logFile + '/logFile.log')
     handler.setLevel(logging.INFO)
     self.logger.addHandler(hdlr=handler)
     self.logger.setLevel(logging.INFO)
コード例 #3
0
class Logger(object):
    def __init__(self, vis_screen):
        self.viz = VisdomPlotter(env_name=vis_screen)
        self.hist_D = []
        self.hist_G = []
        self.hist_Dx = []
        self.hist_DGx = []

    def log_iteration_wgan(self, epoch, gen_iteration, d_loss, g_loss,
                           real_loss, fake_loss):
        print(
            "Epoch: %d, Gen_iteration: %d, d_loss= %f, g_loss= %f, real_loss= %f, fake_loss = %f"
            % (epoch, gen_iteration, d_loss.data.cpu().mean(),
               g_loss.data.cpu().mean(), real_loss, fake_loss))
        self.hist_D.append(d_loss.data.cpu().mean())
        self.hist_G.append(g_loss.data.cpu().mean())

    def log_iteration_gan(self, epoch, d_loss, g_loss, real_score, fake_score):
        print("Epoch: %d, d_loss= %f, g_loss= %f, D(X)= %f, D(G(X))= %f" %
              (epoch, d_loss.data.cpu().mean(), g_loss.data.cpu().mean(),
               real_score.data.cpu().mean(), fake_score.data.cpu().mean()))
        self.hist_D.append(d_loss.data.cpu().mean())
        self.hist_G.append(g_loss.data.cpu().mean())
        self.hist_Dx.append(real_score.data.cpu().mean())
        self.hist_DGx.append(fake_score.data.cpu().mean())

    def plot_epoch(self, epoch):
        self.viz.plot('Discriminator', 'train', epoch,
                      np.array(self.hist_D).mean())
        self.viz.plot('Generator', 'train', epoch,
                      np.array(self.hist_G).mean())
        self.hist_D = []
        self.hist_G = []

    def plot_epoch_w_scores(self, epoch):
        self.viz.plot('Discriminator', 'train', epoch,
                      np.array(self.hist_D).mean())
        self.viz.plot('Generator', 'train', epoch,
                      np.array(self.hist_G).mean())
        self.viz.plot('D(X)', 'train', epoch, np.array(self.hist_Dx).mean())
        self.viz.plot('D(G(X))', 'train', epoch,
                      np.array(self.hist_DGx).mean())
        self.hist_D = []
        self.hist_G = []
        self.hist_Dx = []
        self.hist_DGx = []

    def draw(self, right_images, fake_images):
        self.viz.draw('generated images',
                      fake_images.data.cpu().numpy()[:64] * 128 + 128)
        self.viz.draw('real images',
                      right_images.data.cpu().numpy()[:64] * 128 + 128)
コード例 #4
0
class Logger(object):
    def __init__(self, vis_screen, save_path):
        self.viz = VisdomPlotter(env_name=vis_screen)
        self.hist_D = []
        self.hist_G = []
        self.hist_Dx = []
        self.hist_DGx = []
        self.logger = logging.getLogger('lossesLogger')
        self.logFile = os.path.join('logs', save_path)
        if not os.path.exists(self.logFile):
            os.makedirs(self.logFile)
        handler = logging.FileHandler(self.logFile + '/logFile.log')
        handler.setLevel(logging.INFO)
        self.logger.addHandler(hdlr=handler)
        self.logger.setLevel(logging.INFO)

    def log_iteration_wgan(self, epoch, gen_iteration, d_loss, g_loss,
                           real_loss, fake_loss):
        #print("Epoch type: {}  Gen iter type: {} dloss_type:{} gloss_type: {}, realloss_type: {}, fakeloss_type: {}".format(type(epoch), type(gen_iteration), type(d_loss), type(g_loss), type(real_loss), type(fake_loss)))
        print(
            "Epoch: %d, Gen_iteration: %d, d_loss= %f, g_loss= %f, real_loss= %f, fake_loss = %f"
            % (epoch, gen_iteration, d_loss.data.cpu().mean(),
               g_loss.data.cpu().mean(), real_loss.data.cpu().numpy(),
               fake_loss.data.cpu().numpy()))
        self.hist_D.append(d_loss.data.cpu().mean())
        self.hist_G.append(g_loss.data.cpu().mean())
        self.logger.info(
            "Epoch: %d, Gen_iteration: %d, d_loss= %f, g_loss= %f, real_loss= %f, fake_loss = %f"
            % (epoch, gen_iteration, d_loss.data.cpu().mean(),
               g_loss.data.cpu().mean(), real_loss.data.cpu().numpy(),
               fake_loss.data.cpu().numpy()))

    def log_iteration_gan(self, epoch, d_loss, g_loss, real_score, fake_score):
        print("Epoch: %d, d_loss= %f, g_loss= %f, D(X)= %f, D(G(X))= %f" %
              (epoch, d_loss.data.cpu().mean(), g_loss.data.cpu().mean(),
               real_score.data.cpu().mean(), fake_score.data.cpu().mean()))
        self.hist_D.append(d_loss.data.cpu().mean())
        self.hist_G.append(g_loss.data.cpu().mean())
        self.hist_Dx.append(real_score.data.cpu().mean())
        self.hist_DGx.append(fake_score.data.cpu().mean())
        self.logger.info(
            "Epoch: %d, d_loss= %f, g_loss= %f, D(X)= %f, D(G(X))= %f" %
            (epoch, d_loss.data.cpu().mean(), g_loss.data.cpu().mean(),
             real_score.data.cpu().mean(), fake_score.data.cpu().mean()))

    def log_iteration_began(self, iteration, epoch, d_loss, g_loss, real_loss,
                            fake_loss, lr):
        print(
            "Step: %d, Epochs: %d, Loss D: %.9f, real_loss: %.9f, fake_loss: %.9f, Loss G: %.9f, lr:%.9f"
            % (iteration, epoch, d_loss.data[0], real_loss.data[0],
               fake_loss.data[0], g_loss.data[0], lr))
        self.hist_D.append(d_loss.data.cpu().mean())
        self.hist_G.append(g_loss.data.cpu().mean())
        self.logger.info(
            "Step: %d, Epochs: %d, Loss D: %.9f, real_loss: %.9f, fake_loss: %.9f, Loss G: %.9f, lr:%.9f"
            % (iteration, epoch, d_loss.data[0], real_loss.data[0],
               fake_loss.data[0], g_loss.data[0], lr))

    def plot_epoch(self, epoch):
        self.viz.plot('Discriminator', 'train', epoch,
                      np.array(self.hist_D).mean())
        self.viz.plot('Generator', 'train', epoch,
                      np.array(self.hist_G).mean())
        self.hist_D = []
        self.hist_G = []

    def plot_epoch_w_scores(self, epoch):
        self.viz.plot('Discriminator', 'train', epoch,
                      np.array(self.hist_D).mean())
        self.viz.plot('Generator', 'train', epoch,
                      np.array(self.hist_G).mean())
        self.viz.plot('D(X)', 'train', epoch, np.array(self.hist_Dx).mean())
        self.viz.plot('D(G(X))', 'train', epoch,
                      np.array(self.hist_DGx).mean())
        self.hist_D = []
        self.hist_G = []
        self.hist_Dx = []
        self.hist_DGx = []

    def draw(self, right_images, fake_images):
        self.viz.draw('generated images',
                      fake_images.data.cpu().numpy()[:64] * 128 + 128)
        self.viz.draw('real images',
                      right_images.data.cpu().numpy()[:64] * 128 + 128)
コード例 #5
0
ファイル: utils.py プロジェクト: a2tm7a/WGANs
class Logger(object):
    def __init__(self, vis_screen):
        self.viz = VisdomPlotter(env_name=vis_screen)

        self.hist_D = []
        self.hist_G = []
        self.hist_Dx = []
        self.hist_DGx = []

    def log_iteration_wgan(self, epoch, gen_iteration, d_loss, g_loss,
                           real_loss, fake_loss):
        print(
            "Epoch: %d, Gen_iteration: %d, d_loss= %f, g_loss= %f, real_loss= %f, fake_loss = %f"
            % (epoch, gen_iteration, d_loss.data.cpu().mean(),
               g_loss.data.cpu().mean(), real_loss, fake_loss))
        self.hist_D.append(d_loss.data.cpu().mean())
        self.hist_G.append(g_loss.data.cpu().mean())

    def log_iteration_gan(self, epoch, d_loss, g_loss, real_score, fake_score):
        print("Epoch: %d, d_loss= %f, g_loss= %f, D(X)= %f, D(G(X))= %f" %
              (epoch, d_loss.data.cpu().mean(), g_loss.data.cpu().mean(),
               real_score.data.cpu().mean(), fake_score.data.cpu().mean()))
        self.hist_D.append(d_loss.data.cpu().mean())
        self.hist_G.append(g_loss.data.cpu().mean())
        self.hist_Dx.append(real_score.data.cpu().mean())
        self.hist_DGx.append(fake_score.data.cpu().mean())

    def plot_epoch(self, epoch):
        # self.viz.plot('Discriminator', 'train', epoch, np.array(self.hist_D).mean())
        # self.viz.plot('Generator', 'train', epoch, np.array(self.hist_G).mean())
        # self.hist_D = []
        # self.hist_G = []
        hist = {}
        hist['hist_D'] = self.hist_D
        hist['hist_G'] = self.hist_G
        np.save('training_hist.npy', hist)

    def plot_epoch_w_scores(self, epoch):
        self.viz.plot('Discriminator', 'train', epoch,
                      np.array(self.hist_D).mean())
        self.viz.plot('Generator', 'train', epoch,
                      np.array(self.hist_G).mean())
        self.viz.plot('D(X)', 'train', epoch, np.array(self.hist_Dx).mean())
        self.viz.plot('D(G(X))', 'train', epoch,
                      np.array(self.hist_DGx).mean())

        self.hist_D = []
        self.hist_G = []
        self.hist_Dx = []
        self.hist_DGx = []

    def draw(self, right_images, fake_images, path='fake_image.jpg'):
        self.viz.draw('generated images',
                      fake_images.data.cpu().numpy()[:64] * 128 + 128)
        self.viz.draw('real images',
                      right_images.data.cpu().numpy()[:64] * 128 + 128)

        fake_images = fake_images.data.cpu().numpy()[:64] * 128 + 128

        generated_images = fake_images

        num = generated_images.shape[0]
        height = int(np.math.sqrt(num))
        width = int(np.math.ceil(float(num) / height))

        shape = generated_images.shape[1:4]
        """
        shape[0] - channels
        shape[1] - height
        shape[2] - width

        """
        image = np.zeros((height * shape[1], width * shape[2], shape[0]),
                         dtype=generated_images.dtype)

        for index, img in enumerate(generated_images):
            img = img.transpose(1, 2, 0)
            i = int(index / width)
            j = index % width
            image[i * shape[1]:(i + 1) * shape[1],
                  j * shape[2]:(j + 1) * shape[2], :] = img[:, :, :]

        scipy.misc.imsave('Data/samples/' + path, image)
コード例 #6
0
class Logger(object):
    def __init__(self, vis_screen):
        self.viz = VisdomPlotter(env_name=vis_screen)
        self.hist_D = []
        self.hist_G = []
        self.hist_Dx = []
        self.hist_DGx = []

    def log_iteration_wgan(self, epoch, gen_iteration, d_loss, g_loss,
                           real_loss, fake_loss):
        print(
            "Epoch: %d, Gen_iteration: %d, d_loss= %f, g_loss= %f, real_loss= %f, fake_loss = %f"
            % (epoch, gen_iteration, d_loss.data.cpu().mean(),
               g_loss.data.cpu().mean(), real_loss, fake_loss))
        self.hist_D.append(d_loss.data.cpu().mean())
        self.hist_G.append(g_loss.data.cpu().mean())

    def log_iteration_gan(self, epoch, d_loss, g_loss, real_score, fake_score):
        print("Epoch: %d, d_loss= %f, g_loss= %f, D(X)= %f, D(G(X))= %f" %
              (epoch, d_loss.data.cpu().mean(), g_loss.data.cpu().mean(),
               real_score.data.cpu().mean(), fake_score.data.cpu().mean()))
        self.hist_D.append(d_loss.data.cpu().mean())
        self.hist_G.append(g_loss.data.cpu().mean())
        self.hist_Dx.append(real_score.data.cpu().mean())
        self.hist_DGx.append(fake_score.data.cpu().mean())

    def plot_epoch(self, epoch):
        self.viz.plot('Discriminator', 'train', epoch,
                      np.array(self.hist_D).mean())
        self.viz.plot('Generator', 'train', epoch,
                      np.array(self.hist_G).mean())
        self.hist_D = []
        self.hist_G = []

    def plot_epoch_w_scores(self, epoch):
        self.viz.plot('Discriminator', 'train', epoch,
                      np.array(self.hist_D).mean())
        self.viz.plot('Generator', 'train', epoch,
                      np.array(self.hist_G).mean())
        self.viz.plot('D(X)', 'train', epoch, np.array(self.hist_Dx).mean())
        self.viz.plot('D(G(X))', 'train', epoch,
                      np.array(self.hist_DGx).mean())
        self.hist_D = []
        self.hist_G = []
        self.hist_Dx = []
        self.hist_DGx = []

    def draw(self, right_images, fake_images):
        right_images = self.rescale(right_images)
        fake_images = self.rescale(fake_images)
        self.viz.draw('generated images',
                      fake_images.data.cpu().numpy()[:16, :, :, :] * 255)
        self.viz.draw('real images',
                      right_images.data.cpu().numpy()[:16, :, :, :] * 255)

    def rescale(self, images):
        images[:, 0, :, :] = images[:, 0, :, :] * 0.229 + 0.485
        images[:, 1, :, :] = images[:, 1, :, :] * 0.224 + 0.456
        images[:, 2, :, :] = images[:, 2, :, :] * 0.225 + 0.406
        return images