コード例 #1
0
	def ShowImg (self) :
		"""
		Draw image
		"""
		if self._abort_img  :
			# Exit
			return
		
		# Get image
		img = self.dev.StopImgAqusition()
		
		# Display image
		try :
			if img <> RETURN_FAIL :
				self._img_plot.SetData(img)
		except AttributeError :
			visvis.cla()
			visvis.clf()
			self._img_plot = visvis.imshow(img)
			visvis.title ('Camera view')
			ax = visvis.gca()
			ax.axis.xTicks = []
			ax.axis.yTicks = []
		
		# Start acquisition of histogram
		self.dev.StartImgAqusition()
		wx.CallAfter(self.ShowImg)
コード例 #2
0
	def PlotReferencePhase (self, event) :
		"""
		Plot reference phase
		"""
		visvis.cla(); visvis.clf(); 
		
		# get actual amplitude and phased
		phase = self.GetReferencePhase()[0]
		ampl = np.ones(phase.size)
		ampl, phase = self.DevPulseShaper.GetUnwrappedAmplPhase(ampl, phase) 
		
		# Wrap the phase in radians
		phase %= (2*np.pi)
		
		# Get the phase in unites of 2*pi
		phase /= (2*np.pi)
		
		visvis.subplot(211)
		visvis.plot(phase)
		visvis.ylabel ('Reference phase')
		visvis.xlabel ('puls shaper pixel number')
		visvis.title ('Current reference phase (in unites of 2*pi)')
		
		visvis.subplot(212)
		visvis.plot( self.corrections, lc='r',ms='*', mc='r' )
		visvis.ylabel ('Value of coefficients')
		visvis.xlabel ('coefficient number')
		visvis.title ('Value of corrections')
コード例 #3
0
ファイル: vis.py プロジェクト: jupito/dwilib
def plot(image):
    # ax = vv.gca()
    # ms = vv.Mesh(ax)
    logging.warning([image.shape, image.spacing])
    vol = image[:, :, :, 0]
    logging.warning([vol.min(), vol.max()])
    vol = util.normalize(vol, 'ADCm')
    logging.warning([vol.min(), vol.max()])
    vol = vv.Aarray(vol, image.spacing)

    cmap = None
    # cmap = vv.CM_VIRIDIS
    render_style = 'mip'
    # render_style = 'iso'
    # render_style = 'ray'
    # render_style = 'edgeray'
    # render_style = 'litray'

    vv.figure()
    vv.xlabel('x axis')
    vv.ylabel('y axis')
    vv.zlabel('z axis')

    a1 = vv.subplot(111)
    t1 = vv.volshow(vol, cm=cmap, renderStyle=render_style)
    t1.isoThreshold = 0.7
    vv.title(render_style)

    # a1.camera = a2.camera = a3.camera
    vv.ColormapEditor(a1)
コード例 #4
0
ファイル: show.py プロジェクト: simphony/nfluid
def show(items, normals=None):
    """Function that shows a mesh object.
    """
    for item in items:
        vv.clf()
        # convert to visvis.Mesh class
        new_normals = []
        new_vertices = []
        for k, v in item.vertices.iteritems():
            new_normals.append(item.normal(k))
            new_vertices.append(v)
        mesh = item.to_visvis_mesh()

        mesh.SetVertices(new_vertices)
        mesh.SetNormals(new_normals)
        mesh.faceColor = 'y'
        mesh.edgeShading = 'plain'
        mesh.edgeColor = (0, 0, 1)

    axes = vv.gca()
    if axes.daspectAuto is None:
        axes.daspectAuto = False
    axes.SetLimits()

    if normals is not None:
        for normal in normals:
            sl = solidLine(normal, 0.15)
            sl.faceColor = 'r'

    # Show title and enter main loop
    vv.title('Show')
    app = vv.use()
    app.Run()
コード例 #5
0
ファイル: drawing.py プロジェクト: gwdgithubnom/visvis
    def __init__(self):

        # Create figure and axes
        vv.figure()
        self._a = a = vv.gca()
        vv.title("Hold mouse to draw lines. Use 'rgbcmyk' and '1-9' keys.")

        # Set axes
        a.SetLimits((0, 1), (0, 1))
        a.cameraType = "2d"
        a.daspectAuto = False
        a.axis.showGrid = True

        # Init variables needed during drawing
        self._active = None
        self._pp = Pointset(2)

        # Create null and empty line objects
        self._line1 = None
        self._line2 = vv.plot(vv.Pointset(2), ls="+", lc="c", lw="2", axes=a)

        # Bind to events
        a.eventMouseDown.Bind(self.OnDown)
        a.eventMouseUp.Bind(self.OnUp)
        a.eventMotion.Bind(self.OnMotion)
        a.eventKeyDown.Bind(self.OnKey)
コード例 #6
0
def main(select=3, **kwargs):
    """Script main function.

    select: int
        1: Medical data
        2: Blocky data, different every time
        3: Two donuts
        4: Ellipsoid

    """
    import visvis as vv  # noqa: delay import visvis and GUI libraries

    # Create test volume
    if select == 1:
        vol = vv.volread('stent')
        isovalue = kwargs.pop('level', 800)
    elif select == 2:
        vol = vv.aVolume(20, 128)
        isovalue = kwargs.pop('level', 0.2)
    elif select == 3:
        with timer('computing donuts'):
            vol = donuts()
        isovalue = kwargs.pop('level', 0.0)
        # Uncommenting the line below will yield different results for
        # classic MC
        # vol *= -1
    elif select == 4:
        vol = ellipsoid(4, 3, 2, levelset=True)
        isovalue = kwargs.pop('level', 0.0)
    else:
        raise ValueError('invalid selection')

    # Get surface meshes
    with timer('finding surface lewiner'):
        vertices1, faces1 = marching_cubes_lewiner(vol, isovalue, **kwargs)[:2]

    with timer('finding surface classic'):
        vertices2, faces2 = marching_cubes_classic(vol, isovalue, **kwargs)

    # Show
    vv.figure(1)
    vv.clf()
    a1 = vv.subplot(121)
    vv.title('Lewiner')
    m1 = vv.mesh(np.fliplr(vertices1), faces1)
    a2 = vv.subplot(122)
    vv.title('Classic')
    m2 = vv.mesh(np.fliplr(vertices2), faces2)
    a1.camera = a2.camera

    # visvis uses right-hand rule, gradient_direction param uses left-hand rule
    m1.cullFaces = m2.cullFaces = 'front'  # None, front or back

    vv.use().Run()
コード例 #7
0
def drawNodalValues(nodeVals, coords, edof, dofsPerNode, elType, clim=None, axes=None, axesAdjust=True, doDrawMesh=True, title=None):
    '''
    Draws scalar nodal values in 2D or 3D. Returns the Mesh object that represents
    the mesh.
    Parameters:
    nodeVals    - An N-by-1 array or a list of scalars. The Scalar values at the
                  nodes. nodeVals[i] should be the value of node i 
    coords      - An N-by-2 or N-by-3 array. Row i contains the x,y,z coordinates
                  of node i.
    edof        - An E-by-L array. Element topology. (E is the number of elements 
                  and L is the number of dofs per element)
    dofsPerNode - Integer. Dofs per node.
    elType      - Integer. Element Type. See Gmsh manual for details. Usually 2 
                  for triangles or 3 for quadrangles.
    clim        - 2-tuple. Colorbar limits (min, max). Defines the value range of
                  the colorbar. Defaults to None, in which case min/max are set to
                  min/max of nodeVals.
    axes        - Visvis Axes. The Axes where the model will be drawn. 
                  If unspecified the current Axes will be used, or a new Axes will
                  be created if none exist.
    axesAdjust  - Boolean. True if the view should be changed to show the whole 
                  model. Default True.
    doDrawMesh  - Boolean. True if mesh wire should be drawn. Default True.
    title       - String. Changes title of the figure. Default "Node Values".
    '''    
    axes, verts, faces, verticesPerFace, is3D = _preMeshDrawPrep(axes, coords, edof, dofsPerNode, elType)
    m = vv.Mesh(parent=axes, vertices=verts, faces=faces, values=nodeVals, verticesPerFace=verticesPerFace)
    
    if clim != None: #Set colorbar limits.
        m.clim = clim
        setClim = False
    else:
        setClim = True
    
    edgeSh = 'plain' if doDrawMesh else None
    m.faceShading, m.edgeShading = ('smooth', edgeSh)#NOTE: It seems colormap coloring breaks when faceshading='plain'. 'smooth' must be used.
    m.ambient = 1
    m.diffuse = 0
    m.specular = 0 #Disable specular. 
    m.SetValues(nodeVals, setClim) #Set the values again, because it doesn't work in the constructor for unknown reasons
    
    axes.light0.ambient = 1.0
    axes.light0.diffuse = 0.0  #Only ambient light to avoid shadows
    
    m.colormap = vv.colormaps['jet']
    _makeColorBar("Node values", axes)
        
    # Adjust axes:
    if axesAdjust:
        _adjustaxes(axes, is3D)
    
    vv.title(title, axes)
    return m
コード例 #8
0
def drawDisplacements(displacements, coords, edof, dofsPerNode, elType, nodeVals=None, clim=None, axes=None, 
                      axesAdjust=True, doDrawUndisplacedMesh=True, magnfac=1.0,  title=None):
    '''
    Draws mesh with displacements in 2D or 3D. Scalar nodal values can also be 
    drawn on the mesh. Returns the displaced Mesh object.
    Parameters:
    displacements-An N-by-1 array (or matrix). Row i contains the displacement of
                  dof i. 
                  N-by-2 or N-by-3 arrays are also accepted, in which case row i 
                  contains the x,y,z displacements of node i.
    coords      - An N-by-2 or N-by-3 array. Row i contains the x,y,z coordinates
                  of node i.
    edof        - An E-by-L array. Element topology. (E is the number of elements
                  and L is the number of dofs per element)
    dofsPerNode - Integer. Dofs per node.
    elType      - Integer. Element Type. See Gmsh manual for details. Usually 2 
                  for triangles or 3 for quadrangles.
    nodeVals    - An N-by-1 array or a list of scalars. The Scalar values at the
                  nodes. nodeVals[i] should be the value of node i.
    clim        - 2-tuple. Colorbar limits (min, max). Defines the value range of
                  the colorbar. Defaults to None, in which case min/max are set 
                  to min/max of nodeVals.
    axes        - Visvis Axes. The Axes where the model will be drawn. 
                  If unspecified the current Axes will be used, or a new Axes will
                  be created if none exist.
    axesAdjust  - Boolean. True if the view should be changed to show the whole 
                  model. Default True.
    doDrawMesh  - Boolean. True if mesh wire should be drawn. Default True.
    magnfac     - Float. Magnification factor. Displacements are multiplied by
                  this value. Use this to make small displacements more visible.
    title       - String. Changes title of the figure. Default None (in which case
                  title depends on other parameters).
    '''
    
    if displacements.shape[1] != coords.shape[1]:
        displacements = np.reshape(displacements, (-1, coords.shape[1]))
    displaced = np.asarray(coords + magnfac * displacements)
       
    if doDrawUndisplacedMesh:
        drawMesh(coords, edof, dofsPerNode, elType, axes, axesAdjust, title=title, color=(0.5, 0.5, 0.5), filled=False)
    
    if nodeVals != None:
        m = drawNodalValues(nodeVals, displaced, edof, dofsPerNode, elType, clim=clim, axes=axes, axesAdjust=axesAdjust, doDrawMesh=True, title=title)
    else:
        m = drawMesh(displaced, edof, dofsPerNode, elType, axes, axesAdjust, title=title) 
    
    if title != None:
        vv.title(title, axes)
    return m
コード例 #9
0
	def ScanVoltage (self) :
		"""
		Using the iterator <self.scan_pixel_voltage_pair> record the spectral response 
		by applying the voltages
		"""
		# Pause calibration, if user requested
		try : 
			if self.pause_calibration : return
		except AttributeError : return
				
		try :
			param = self.scan_pixel_voltage_pair.next()
			self.PulseShaper.SetUniformMasks(*param)
			
			# Getting spectrum
			spectrum = self.Spectrometer.AcquiredData() 
			# Save the spectrum
			try : self.SpectraGroup["voltages_%d_%d" % param] = spectrum
			except RuntimeError : print "There was RuntimeError while saving scan voltages_%d_%d" % param
			
			# Plot the spectra
			visvis.gca().Clear()
			
			visvis.plot (self.wavelengths, spectrum)
			visvis.xlabel("wavelength (nm)")
			visvis.ylabel("counts")
			
			# Scanning progress info
			self.scanned += 1.
			percentage_completed = 100.*self.scanned/self.scan_length
			seconds_left = ( time.clock() - self.initial_time )*(100./percentage_completed - 1.)
			# convert to hours:min:sec
			m, s = divmod(seconds_left, 60)
			h, m = divmod(m, 60)
			
			title_info = param + (percentage_completed, h, m, s)
			visvis.title ("Scanning spectrum by applying voltages %d/%d. Progress: %.1f%% completed. Time left: %d:%02d:%02d." %  title_info)
			
			self.fig.DrawNow()
			
			# Measure the next pair
			wx.CallAfter(self.ScanVoltage)
		except StopIteration :
			# Perform processing of the measured data
			wx.CallAfter(self.ExtractPhaseFunc, filename=self.calibration_file.filename)
			# All voltages are scanned
			self.StopAllJobs()
			# Sop using the shaper
			self.PulseShaper.StopDevice()
コード例 #10
0
    def __init__(self, sampleinterval=0.1, timewindow=10.0, size=(600, 350)):
        # Data stuff
        self._interval = int(sampleinterval * 1000)
        self._bufsize = int(timewindow / sampleinterval)
        self.databuffer = collections.deque([0.0] * self._bufsize, self._bufsize)
        self.x = np.linspace(-timewindow, 0.0, self._bufsize)
        self.y = np.zeros(self._bufsize, dtype=np.float)
        # Visvis stuff
        self.app = vv.use("qt4")
        vv.title("Dynamic Plotting with VisVis")
        self.line = vv.plot(self.x, self.y, lc="b", lw=3, ms="+")
        vv.xlabel("time")
        vv.ylabel("amplitude")
        self.ax = vv.gca()

        self.timer = vv.Timer(self.app, 50, oneshot=False)
        self.timer.Bind(self.updateplot)
        self.timer.Start()
コード例 #11
0
	def DrawSpectrum (self, event) :
		"""
		Draw spectrum interactively
		"""		
		spectrum = self.Spectrometer.AcquiredData() 
		if spectrum == RETURN_FAIL : return
		# Display the spectrum
		if len(spectrum.shape) > 1:
			try :
				self.__interact_2d_spectrum__.SetData(spectrum)
			except AttributeError :
				visvis.cla(); visvis.clf(); 	
				# Spectrum is a 2D image
				visvis.subplot(211)
				self.__interact_2d_spectrum__ = visvis.imshow(spectrum, cm=visvis.CM_JET)
				visvis.subplot(212)
				
			# Plot a vertical binning
			spectrum = spectrum.sum(axis=0)
			
		# Linear spectrum
		try :
			self.__interact_1d_spectrum__.SetYdata(spectrum)	
		except AttributeError :
			if self.wavelengths is None : 
				self.__interact_1d_spectrum__ = visvis.plot (spectrum, lw=3)
				visvis.xlabel ("pixels")
			else : 
				self.__interact_1d_spectrum__ = visvis.plot (self.wavelengths, spectrum, lw=3)
				visvis.xlabel("wavelength (nm)")
			visvis.ylabel("counts")
			
		if self.is_autoscaled_spectrum :
			# Smart auto-scale linear plot
			try :
				self.spectrum_plot_limits = GetSmartAutoScaleRange(spectrum, self.spectrum_plot_limits)
			except AttributeError :
				self.spectrum_plot_limits = GetSmartAutoScaleRange(spectrum)
		
		visvis.gca().SetLimits ( rangeY=self.spectrum_plot_limits )
		
		# Display the current temperature
		try : visvis.title ("Temperature %d (C)" % self.Spectrometer.GetTemperature() )
		except AttributeError : pass
コード例 #12
0
ファイル: main.py プロジェクト: dibondar/PyPhotonicReagents
			def draw_spectrum (event) :
				"""Timer function """
				spectrum = self.Spectrometer.AcquiredData() 
				if spectrum == RETURN_FAIL : return
				# Display the spectrum
				
				############### Take the log of spectrum ##########
				#spectrum = spectrum / float(spectrum.max())
				#np.log10(spectrum, out=spectrum)
				##############################
				
				ax = visvis.gca()
				ax.Clear()	
				visvis.plot (self.wavelengths, spectrum)
				visvis.xlabel("wavelength (nm)")
				visvis.ylabel("counts")
				
				# Display the current temperature
				visvis.title ("Temperature %d (C)" % self.Spectrometer.GetTemperature() )
コード例 #13
0
ファイル: psfview.py プロジェクト: sebi06/PSF_XYZ_Bead_Fit
def psf_volume(stack, xyz_ratio, filepath):

    app = vv.use()
    # Init a figure with two axes
    a1 = vv.subplot(121)
    vv.title('PSF Volume')
    a2 = vv.subplot(122)
    vv.title('PSF XYZ Cross Sections')
    
    # show
    t1 = vv.volshow(stack, axes=a1)  # volume
    t2 = vv.volshow2(stack, axes=a2)  # cross-section interactive
       
    # set labels for both axes
    vv.xlabel('Pixel X', axes=a1)
    vv.ylabel('Pixel Y', axes=a1)
    vv.zlabel('Z-Slice', axes=a1)
    vv.xlabel('Pixel X', axes=a2)
    vv.ylabel('Pixel Y', axes=a2)
    vv.zlabel('Z-Slice', axes=a2)
    
    # set colormaps
    t1.colormap = vv.CM_JET
    t2.colormap = vv.CM_JET

    # set correct aspect ration corresponding to voxel size    
    a1.daspect = 1, 1, xyz_ratio
    a2.daspect = 1, 1, xyz_ratio
    
    # show grid
    a1.axis.showGrid = 1
    a2.axis.showGrid = 1    
    
    # run visvis and show results
    app.Run()

    # save screenshot
    if filepath != 'nosave':
        print 'Saving PSF volume.'
        savename = filepath[:-4] + '_PSF_3D.png'
        # sf: scale factor
        vv.screenshot(savename, sf=1, bg='w')
コード例 #14
0
def drawMesh(coords, edof, dofsPerNode, elType, axes=None, axesAdjust=True, 
             title=None, color=(0,0,0), faceColor=(1,1,1), filled=False):
    '''
    Draws wire mesh of model in 2D or 3D. Returns the Mesh object that represents
    the mesh.
    Parameters:
    coords      - An N-by-2 or N-by-3 array. Row i contains the x,y,z coordinates
                  of node i.
    edof        - An E-by-L array. Element topology. (E is the number of elements
                  and L is the number of dofs per element)
    dofsPerNode - Integer. Dofs per node.
    elType      - Integer. Element Type. See Gmsh manual for details. Usually 2
                  for triangles or 3 for quadrangles.
    axes        - Visvis Axes. The Axes where the model will be drawn. 
                  If unspecified the current Axes will be used, or a new Axes will
                  be created if none exist.
    axesAdjust  - Boolean. True if the view should be changed to show the whole
                  model. Default True.
    title       - String. Changes title of the figure. Default "Mesh".
    color       - 3-tuple or char. Color of the wire. Defaults to black (0,0,0).
                  Can also be given as a character in 'rgbycmkw'.
    faceColor   - 3-tuple or char. Color of the faces. Defaults to white (1,1,1).
                  Parameter filled must be True or faces will not be drawn at all.
    filled      - Boolean. Faces will be drawn if True. Otherwise only the wire is
                  drawn. Default False.
    '''
    #Prep:
    axes, verts, faces, verticesPerFace, is3D = _preMeshDrawPrep(axes, coords, edof, dofsPerNode, elType)
    #Create mesh:
    m = vv.Mesh(parent=axes, vertices=verts, faces=faces, values=color, verticesPerFace=verticesPerFace)
    #Settings:
    fShade = 'plain' if filled else None
    m.faceShading, m.edgeShading = (fShade, 'plain')
    m.edgeColor = color
    m.faceColor = faceColor
    m.specular = 0 
    #Adjust axes:
    if axesAdjust:
        _adjustaxes(axes, is3D)
    #Set title and return:
    vv.title(title, axes)
    return m
コード例 #15
0
ファイル: vv.py プロジェクト: avelo/Pythics
 def set_plot_properties(self, **kwargs):
     # make this the current figure
     vv.figure(self.figure)
     if 'antialiasing' in kwargs:
         value = kwargs.pop('antialiasing')
         p_w.setAntialiasing(value)
     if 'background' in kwargs:
         value = kwargs.pop('background')
         p_w.setBackground(value)
     if 'aspect_ratio' in kwargs:
         # 'auto', 'equal', or a number
         value = kwargs.pop('aspect_ratio')
         if value == 'auto':
             self.axes.daspectAuto = True
         elif value == 'equal':
             self.axes.daspectAuto = False
             self.axes.daspect = (1, 1)
     if 'x_auto_scale' in kwargs:
         value = kwargs.pop('x_auto_scale')
     if 'y_auto_scale' in kwargs:
         value = kwargs.pop('y_auto_scale')
     if 'x_scale' in kwargs:
         value = kwargs.pop('x_scale')
     if 'y_scale' in kwargs:
         value = kwargs.pop('y_scale')
     if 'title' in kwargs:
         value = kwargs.pop('title')
         vv.title(value)
     if 'x_label' in kwargs:
         value = kwargs.pop('x_label')
         self.axes.axis.xLabel = value
     if 'y_label' in kwargs:
         value = kwargs.pop('y_label')
         self.axes.axis.yLabel = value
     if 'x_grid' in kwargs:
         value = kwargs.pop('x_grid')
         p_i.showGrid(x=value)
     if 'y_grid' in kwargs:
         value = kwargs.pop('y_grid')
         p_i.showGrid(y=value)
コード例 #16
0
	def ShowSpectra_by_VaryingPixelBundle (self) :
		"""
		This method is affiliated to the method <self.VaryPixelBundle>
		"""
		# Exit if the iterator is not defined
		try : self.pixel_bundel_value_iter
		except AttributeError : return
		
		try :
			voltage = self.pixel_bundel_value_iter.next()
			
			# Set the mask for pixel bundle
			width = self.SettingsNotebook.CalibrateShaper.pixel_bundle_width.GetValue() / 2
			start_pixel_bundle = self.pixel_to_vary.GetValue()
			mask = np.copy(self.fixed_mask)
			if width:
				mask[max(start_pixel_bundle-width, 0):min(mask.size, start_pixel_bundle+width)] = voltage
			else:
				# Enforce single pixel width
				mask[min(max(start_pixel_bundle,0),mask.size)] = voltage	
			self.PulseShaper.SetMasks( mask, self.fixed_mask)
		
			# Getting spectrum
			spectrum = self.Spectrometer.AcquiredData()
		
			# Plot the spectra
			visvis.gca().Clear()
			visvis.plot (self.wavelengths, spectrum)
			visvis.xlabel("wavelength (nm)")
			visvis.ylabel("counts")
			visvis.title ("Voltage %d / %d " % (voltage, self.fixed_mask[0]) )
			self.fig.DrawNow()
			
			# Going to the next iteration
			wx.CallAfter (self.ShowSpectra_by_VaryingPixelBundle)
		except StopIteration :
			# Finish the job
			self.StopAllJobs()
コード例 #17
0
ファイル: test_random.py プロジェクト: binaryannamolly/visvis
def show(self):
    
    import visvis as vv
    
    # If there are many tests, make a selection
    if len(self._tests) > 1000:
        tests = random.sample(self._tests, 1000)
    else:
        tests = self._tests
    
    # Get ticks
    nn = [test[0] for test in tests]
    
    # Create figure
    vv.figure(1)
    vv.clf()
    
    # Prepare kwargs
    plotKwargsText = {'ms':'.', 'mc':'b', 'mw':5, 'ls':''}
    plotKwargsBin = {'ms':'.', 'mc':'r', 'mw':5, 'ls':''}
    
    # File size against number of elements
    vv.subplot(221)
    vv.plot(nn, [test[2][0] for test in tests], **plotKwargsText)
    vv.plot(nn, [test[2][1] for test in tests], **plotKwargsBin)
    vv.legend('text', 'binary')
    vv.title('File size')
    
    # Speed against number of elements
    vv.subplot(223)
    vv.plot(nn, [test[1][4] for test in tests], **plotKwargsText)
    vv.plot(nn, [test[1][6] for test in tests], **plotKwargsBin)
    vv.legend('text', 'binary')
    vv.title('Save time')
    
    # Speed (file) against number of elements
    vv.subplot(224)
    vv.plot(nn, [test[1][5] for test in tests], **plotKwargsText)
    vv.plot(nn, [test[1][7] for test in tests], **plotKwargsBin)
    vv.legend('text', 'binary')
    vv.title('Load time')
コード例 #18
0
	def GetDeltaScan (self, event) :
		"""
		Measure spectra by varying parameter delta in reference phase mask
		"""
		# Create pseudonyms of necessary devices 
		self.DevSpectrometer 	= self.parent.Spectrometer.dev
		self.DevPulseShaper		= self.parent.PulseShaper.dev
		
		####################### Initiate devices #############################
		
		# Initiate spectrometer
		settings = self.parent.Spectrometer.GetSettings()
		if self.DevSpectrometer.SetSettings(settings) == RETURN_FAIL : return
		
		# Initiate pulse shaper
		settings = self.parent.PulseShaper.GetSettings()
		if self.DevPulseShaper.Initialize(settings) == RETURN_FAIL : return
		
		# Get number of optimization variables 
		self.num_pixels = self.DevPulseShaper.GetParamNumber()
		if self.num_pixels == RETURN_FAIL :
			raise RuntimeError ("Optimization cannot be started since calibration file was not loaded")
		
		miips_settings = self.GetSettings()
		#####################################################################
		
		# Get range of coefficient 
		coeff_range = np.linspace( miips_settings["coeff_min"], miips_settings["coeff_max"], miips_settings["coeff_num"] )
	
		# Get reference phase based on the corrections already obtained
		reference_phase, X, polynomial_basis = self.GetReferencePhase(miips_settings)
		
		# Get new polynomial
		new_coeffs = np.zeros(miips_settings["polynomial_order"] + 1)
		new_coeffs[-1] = 1
		current_polynomial = polynomial_basis(new_coeffs)(X)
	
		# Chose max amplitude
		max_ampl = miips_settings["max_ampl"]*np.ones(self.num_pixels)
		
		# Adjusting button's settings
		button = event.GetEventObject()
		button.SetLabel (button._stop_label)
		button.SetBackgroundColour('red')
		button.Bind( wx.EVT_BUTTON, button._stop_method)
		self.need_abort = False
		
		for scan_num, coeff in enumerate(coeff_range) :
			# Get current phase mask
			current_phase = coeff*current_polynomial
			current_phase += reference_phase
			
			# Check for consistency
			current_phase %= 1
			
			# Set the pulse shape
			self.DevPulseShaper.SetAmplPhase(max_ampl, current_phase) 
			
			wx.Yield()
			# abort, if requested 
			if self.need_abort : break
				
			# Get spectrum
			spectrum = self.DevSpectrometer.AcquiredData()
			
			# Vertical binning
			spectrum = ( spectrum.sum(axis=0) if len(spectrum.shape) == 2 else spectrum )
		
			try : spectral_scans
			except NameError :
				# Allocate space for spectral scans
				spectral_scans = np.zeros( (coeff_range.size, spectrum.size), dtype=spectrum.dtype )
			
			# Save spectrum
			spectral_scans[ scan_num ] = spectrum
			
			# Display the currently acquired data
			try : spectral_scan_2d_img.SetData(spectral_scans)
			except NameError :
				visvis.cla(); visvis.clf(); 	
				spectral_scan_2d_img = visvis.imshow(spectral_scans, cm=visvis.CM_JET)
				visvis.ylabel ('coefficeints')
				visvis.xlabel ('wavelegth')
				
		#######################################################
		
		# Get current wavelength
		wavelength = self.DevSpectrometer.GetWavelengths()
		
		# Adding the scan to log
		self.scan_log.append( {
			"spectral_scans" 	:	spectral_scans,
			"reference_phase" 	:	reference_phase,
			"current_polynomial":	current_polynomial,
			"coeff_range"		: 	coeff_range,
			"wavelength"		:	wavelength
		} )
		
		# Plotting fit
		visvis.cla(); visvis.clf(); 	
		
		################ Find the value of coeff such that it maximizes the total intensity of SHG
		
		# Method 1: use polynomial filter
		
		# Ignored not scanned parameter
		spectral_sum = spectral_scans.sum(axis=1)
		indx = np.nonzero(spectral_sum > 0)		
		# Fit the total spectral intensity with chosen polynomials
		spectral_sum_fit = polynomial_basis.fit(coeff_range[indx], spectral_sum[indx] , 10)
		# Find extrema of the polynomial fit
		opt_coeff = spectral_sum_fit.deriv().roots()
		# Find maximum
		fit_max_sum_val = opt_coeff[ np.argmax(spectral_sum_fit(opt_coeff)) ].real
		print "\n\nOptimal value of the coefficient (using the polynomial fit) is ", fit_max_sum_val
		
		# Method 2: Use Gaussian filter 
		# Smoothing spectral scans
		filtered_spectral_scans = gaussian_filter(spectral_scans, (2, 0.5) )
		gauss_max_sum_val = coeff_range[ np.argmax(filtered_spectral_scans.sum(axis=1)) ]
		print "\nOptimal value of the coefficient (using the Gaussian filter) is ", gauss_max_sum_val
		
		# If the difference between methods is great then use the Gaussian filter 
		if abs(gauss_max_sum_val - fit_max_sum_val)/np.abs([gauss_max_sum_val, fit_max_sum_val]).max() > 0.3 :
			max_sum_val = gauss_max_sum_val
		else : 
			max_sum_val = fit_max_sum_val
		
		self.current_coeff_val.SetValue( max_sum_val )
		filtered_spectral_scans[ np.searchsorted(coeff_range, max_sum_val) ][0:-1:2] = spectral_scans.min()		
		
		################ Plotting results ####################
		#spectral_scan_2d_img.SetData(spectral_scans)
		#spectral_scan_2d_img.SetClim( spectral_scans.min(), spectral_scans.max() )
		
		visvis.subplot(121)
		visvis.title("Raw spectral scans")
		visvis.imshow(spectral_scans, cm=visvis.CM_JET)
		visvis.ylabel ('coefficeints'); visvis.xlabel ('wavelegth')
		
		visvis.subplot(122)
		visvis.title("Finding maximum")
		visvis.imshow(filtered_spectral_scans, cm=visvis.CM_JET)
		visvis.ylabel ('coefficeints'); visvis.xlabel ('wavelegth')
		
		# Readjust buttons settings
		self.StopScannning(event)
コード例 #19
0
def drawGeometry(geoData, axes=None, axesAdjust=True, drawPoints=True, labelPoints=True, labelCurves=True, title=None, fontSize=11, N=20):
    '''
    Draws the geometry (points and curves) in geoData
    Parameters:
    geoData    - GeoData object. Geodata contains geometric information of the 
                 model.
    axes       - Visvis Axes. The Axes where the model will be drawn. 
                 If unspecified the current Axes will be used, or a new Axes will
                 be created if none exist.
    axesAdjust - Boolean. If True the view will be changed to show the whole 
                 model. Default True.
    drawPoints - Boolean. If True points will be drawn.
    labelPoints- Boolean. If True Points will be labeled. The format is:
                 ID[marker]. If a point has marker==0 only the ID is written. 
    labelCurves- Boolean. If True Curves will be labeled. The format is: 
                 ID(elementsOnCurve)[marker].
    fontSize   - Integer. Size of the text in the text labels. Default 11. 
    N          - Integer. The number of discrete points per curve segment. 
                 Default 20. Increase for smoother curves. Decrease for better 
                 performance.
    '''
    
    if axes is None:
        axes = vv.gca()
    axes.bgcolor = (0.7, 0.7, 0.7)
    
    if drawPoints:
        P = np.array(geoData.getPointCoords()) #M-by-3 list of M points.
        plotArgs = {'mc':'r', 'mw':5, 'lw':0, 'ms':'o', 'axesAdjust':False, 'axes':axes}
        if geoData.is3D: 
            vv.plot(P[:,0], P[:,1], P[:,2], **plotArgs)
        else:
            vv.plot(P[:,0], P[:,1], **plotArgs)           
        
        if labelPoints: #Write text label at the points:
            for (ID, (xyz, elSize, marker)) in geoData.points.items(): #[[x, y, z], elSize, marker]
                text = "  " + str(ID) + ("[%s]"%marker if marker is not 0 else '')
                addText(text, xyz, fontSize=fontSize-1, color=(0.5,0,0.5), axes=axes)  
    
    for(ID, (curveName, pointIDs, marker, elementsOnCurve, _, _)) in geoData.curves.items():
        points = geoData.getPointCoords(pointIDs)
        if curveName == "Spline":
            P = _catmullspline(points, N)
        if curveName == "BSpline":
            P = _bspline(points, N)
        if curveName == "Circle":
            P = _circleArc(*points, pointsOnCurve=N)
        if curveName == "Ellipse":
            P = _ellipseArc(*points, pointsOnCurve=N)
        plotArgs = {'lc':'k', 'ms':None, 'axesAdjust':False, 'axes':axes} #Args for plot style. Black lines with no symbols at points.
        if geoData.is3D:
            vv.plot(P[:,0], P[:,1], P[:,2], **plotArgs)
        else:
            vv.plot(P[:,0], P[:,1], **plotArgs)
        
        if labelCurves:
            midP = P[int(P.shape[0]*7.0/12), :].tolist() # Sort of midpoint along the curve. Where the text goes.
            #Create the text for the curve. Includes ID, elementsOnCurve, and marker:
            text = " "+str(ID)
            text += "(%s)"%(elementsOnCurve) if elementsOnCurve is not None else ''
            text += "[%s]"%(marker) if marker is not 0 else '' #Something like "4(5)[8]"
            addText(text, midP, fontSize=fontSize, axes=axes)
        
    if title != None:
        vv.title(title, axes)
    
    if axesAdjust:
        _adjustaxes(axes, geoData.is3D)
    axes.daspectAuto = False
    axes.daspect = (1,1,1)
コード例 #20
0
ファイル: colorVolume.py プロジェクト: binaryannamolly/visvis
""" This example demonstrates rendering a color volume.
This example demonstrates two render styles. Note that
all render styles are capable of rendering color data.
"""

import numpy as np
import visvis as vv
app = vv.use()

# Use vv.aVolume to create random bars for each color plane
N = 64
vol = np.empty((N,N,N,3), dtype='float32')
for i in range(3):
    vol[:,:,:,i] = vv.aVolume(10,N)

# Show
vv.figure()
a1 = vv.subplot(121); 
t1 = vv.volshow(vol[:,:,:,:], renderStyle = 'mip')
vv.title('color MIP render')
a2 = vv.subplot(122); 
t2 = vv.volshow(vol[:,:,:,:], renderStyle = 'iso')
t2.isoThreshold = 0.5
vv.title('color ISO-surface render')

# Share cameras
a1.camera = a2.camera

# Run app
app.Run()
コード例 #21
0
ファイル: anisotropicData.py プロジェクト: chiluf/visvis.dev
#!/usr/bin/env python
import visvis as vv
from visvis.pypoints import Aarray
app = vv.use()

# Let's say we have lena, but only the even pixels in the y dimension.
# So each pixel should have twice the size in the y direction.
im = vv.imread('lena.png')
im = im[::2,:,:]

# Init a figure with two axes
vv.figure()
a1 = vv.subplot(121); vv.title('pixel units')
a2 = vv.subplot(122); vv.title('real-world units')

# Method 1: scale the whole scene
# Use this if you want the axis to depict pixel units.
t1 = vv.imshow(im, axes=a1)
a1.daspect = 1,-2 # daspect works x,y,z, the y-axis is flipped for images

# Method 2: use the Aarray class to scale the image
# You could use this is you know the physical dimensions of a pixel,
# to have the axis depict, for example, mm.
im2 = Aarray(im,(2,1,1))  # sampling is given in y,x,color order
t2 = vv.imshow(im2, axes=a2)

app.Run()
コード例 #22
0
def drawElementValues(ev, coords, edof, dofsPerNode, elType, displacements=None, clim=None, axes=None, 
                      axesAdjust=True, doDrawMesh=True, doDrawUndisplacedMesh=False, magnfac=1.0, title=None):
    '''
    Draws scalar element values in 2D or 3D. Returns the world object 
    elementsWobject that represents the mesh.
    Parameters:
    ev          - An N-by-1 array or a list of scalars. The Scalar values of the
                  elements. ev[i] should be the value of element i. 
    coords      - An N-by-2 or N-by-3 array. Row i contains the x,y,z coordinates
                  of node i.
    edof        - An E-by-L array. Element topology. (E is the number of elements
                  and L is the number of dofs per element)
    dofsPerNode - Integer. Dofs per node.
    elType      - Integer. Element Type. See Gmsh manual for details. Usually 2 
                  for triangles or 3 for quadrangles.
    displacements - An N-by-2 or N-by-3 array. Row i contains the x,y,z 
                    displacements of node i.
    clim        - 2-tuple. Colorbar limits (min, max). Defines the value range of
                  the colorbar. Defaults to None, in which case min/max are set to
                  min/max of nodeVals.
    axes        - Visvis Axes. The Axes where the model will be drawn. 
                  If unspecified the current Axes will be used, or a new Axes will
                  be created if none exist.
    axesAdjust  - Boolean. True if the view should be changed to show the whole 
                  model. Default True.
    doDrawMesh  - Boolean. True if mesh wire should be drawn. Default True.
    doDrawUndisplacedMesh - Boolean. True if the wire of the undisplaced mesh 
                  should be drawn on top of the displaced mesh. Default False. 
                  Use only if displacements != None.
    magnfac     - Float. Magnification factor. Displacements are multiplied by
                  this value. Use this to make small displacements more visible.
    title       - String. Changes title of the figure. Default "Element Values".
    '''
    #Since vis.Mesh does not allow setting different colours for different faces, we need
    # a custom world object (WObject) for this function. 
    # http://code.google.com/p/visvis/wiki/example_customWobject
    # http://code.google.com/p/visvis/wiki/creatingWibjectsAndWobjects
    

    if doDrawUndisplacedMesh:
        drawMesh(coords, edof, dofsPerNode, elType, axes, axesAdjust, color=(0.5, 0.5, 0.5))
    
    if displacements is not None:
        if displacements.shape[1] != coords.shape[1]:
            displacements = np.reshape(displacements, (-1, coords.shape[1]))
            coords = np.asarray(coords + magnfac * displacements)
    
    axes, verts, faces, verticesPerFace, is3D = _preMeshDrawPrep(axes, coords, edof, dofsPerNode, elType)
    
    
    #This is done because 3D elements are made up of several faces.
    #TODO: Discard inner faces that are not visible.
    fPerElms = { 1:0,   2:1,   3:1,   4:4,   5:6} #TODO: Extend with more element types
    facesPerElement = fPerElms[elType]
    #Repeat the element values so that we get the value of each face:
    faceVals = np.repeat(ev, facesPerElement, axis=0) 

    c = _elementsWobject(axes, faceVals, verts, faces, verticesPerFace, doDrawMesh, clim) #Creates the world object that gets drawn on screen.
    
    _makeColorBar("Element values", axes) #Finds or creates colorbar and sets the label.
    
    # Adjust axes
    if axesAdjust:
        _adjustaxes(axes, is3D)
    
    vv.title(title, axes)
    return c
コード例 #23
0
    def ExtractPhaseFunc(self, event=None, filename=None):
        """
		This function is the last stage of calibration, 
		when measured data is mathematically processed to obtain the calibration curves.
		"""

        # If filename is not specified, open the file dialogue
        if filename is None:
            filename = self.LoadSettings(title="Load calibration file...")
            # Update the name of pulse shaper calibration file
            import os
            self.SettingsNotebook.PulseShaper.SetSettings(
                {"calibration_file_name": os.path.abspath(filename)})

        visvis.clf()

        # Loading the file calibration file
        with h5py.File(filename, 'a') as calibration_file:
            ############### Loading data ####################
            wavelengths = calibration_file["calibration_settings/wavelengths"][
                ...]
            fixed_voltage = calibration_file[
                "calibration_settings/fixed_voltage"][...]
            pulse_shaper_pixel_num = calibration_file[
                "calibration_settings/pulse_shaper_pixel_num"][...]
            initial_pixel = calibration_file[
                "settings/CalibrateShaper/initial_pixel"][...]
            final_pixel = calibration_file[
                "settings/CalibrateShaper/final_pixel"][...]
            pixel_bundle_width = calibration_file[
                "settings/CalibrateShaper/pixel_bundle_width"][...]
            pixel_to_lamba = str(
                calibration_file["settings/CalibrateShaper/pixel_to_lamba"][
                    ...])
            # Convert to dict
            pixel_to_lamba = eval("{%s}" % pixel_to_lamba)

            # Loading scans of slave and masker masks
            master_mask_scans = []
            slave_mask_scans = []
            for key, spectrum in calibration_file[
                    "spectra_from_uniform_masks"].items():
                master_volt, slave_volt = map(int, key.split('_')[-2:])
                if master_volt == fixed_voltage:
                    slave_mask_scans.append((slave_volt, spectrum[...]))
                if slave_volt == fixed_voltage:
                    master_mask_scans.append((master_volt, spectrum[...]))

            # Sort by voltage
            master_mask_scans.sort()
            slave_mask_scans.sort()

            # Extract spectral scans and voltages for each mask
            master_mask_voltage, master_mask_scans = zip(*master_mask_scans)
            master_mask_voltage = np.array(master_mask_voltage)
            master_mask_scans = np.array(master_mask_scans)

            slave_mask_voltage, slave_mask_scans = zip(*slave_mask_scans)
            slave_mask_voltage = np.array(slave_mask_voltage)
            slave_mask_scans = np.array(slave_mask_scans)

            ################### Find the edges of pixels #################

            # function that converts pixel number to pulse shaper
            # `pixel_to_lamba` is a dictionary  with key = pixel, value = lambda
            deg = 1  #min(1,len(pixel_to_lamba)-1)
            print np.polyfit(pixel_to_lamba.keys(), pixel_to_lamba.values(), 1)
            pixel2lambda_func = np.poly1d(
                np.polyfit(pixel_to_lamba.keys(),
                           pixel_to_lamba.values(),
                           deg=deg))
            #lambda2pixel_func = np.poly1d( np.polyfit(pixel_to_lamba.values(), pixel_to_lamba.keys(), deg=deg ) )

            # Get pixels_edges in shaper pixels
            pixels_edges_num = np.arange(initial_pixel, final_pixel,
                                         pixel_bundle_width)
            if pixels_edges_num[-1] < final_pixel:
                pixels_edges_num = np.append(pixels_edges_num, [final_pixel])

            # Get pixels_edges in logical_pixel_lambda
            pixels_edges = pixel2lambda_func(pixels_edges_num)

            # Get pixels_edges in positions of the spectrometer spectra
            pixels_edges = np.abs(wavelengths -
                                  pixels_edges[:, np.newaxis]).argmin(axis=1)

            # Sorting
            indx = np.argsort(pixels_edges)
            pixels_edges = pixels_edges[indx]
            pixels_edges_num = pixels_edges_num[indx]

            # Plot
            visvis.cla()
            visvis.clf()
            visvis.plot(pixel_to_lamba.values(),
                        pixel_to_lamba.keys(),
                        ls=None,
                        ms='*',
                        mc='g',
                        mw=15)
            visvis.plot(wavelengths[pixels_edges],
                        pixels_edges_num,
                        ls='-',
                        lc='r')
            visvis.xlabel('wavelength (nm)')
            visvis.ylabel('pulse shaper pixel')
            visvis.legend(['measured', 'interpolated'])
            self.fig.DrawNow()

            ################ Perform fitting of the phase masks #################
            master_mask_fits = self.FitSpectralScans(master_mask_scans,
                                                     master_mask_voltage,
                                                     pixels_edges)
            slave_mask_fits = self.FitSpectralScans(slave_mask_scans,
                                                    slave_mask_voltage,
                                                    pixels_edges)

            ################# Perform fitting of dispersion and phase functions #################
            master_mask_TC_fitted, master_mask_scans, master_mask_disp_ph_curves = \
             self.GetDispersionPhaseCurves (wavelengths, master_mask_scans, master_mask_voltage,
              pixels_edges, master_mask_fits, pixel2lambda_func, pulse_shaper_pixel_num )

            slave_mask_TC_fitted, slave_mask_scans, slave_mask_disp_ph_curves = \
             self.GetDispersionPhaseCurves (wavelengths, slave_mask_scans, slave_mask_voltage,
              pixels_edges, slave_mask_fits, pixel2lambda_func, pulse_shaper_pixel_num )

            ################ Saving fitting parameters ####################

            #################################################################
            # Save surface calibration
            try:
                del calibration_file["calibrated_surface"]
            except KeyError:
                pass

            CalibratedSurfaceGroupe = calibration_file.create_group(
                "calibrated_surface")

            master_mask_calibrated_surface = CalibratedSurfaceGroupe.create_group(
                "master_mask")
            for key, value in master_mask_disp_ph_curves.items():
                master_mask_calibrated_surface[key] = value

            slave_mask_calibrated_surface = CalibratedSurfaceGroupe.create_group(
                "slave_mask")
            for key, value in slave_mask_disp_ph_curves.items():
                slave_mask_calibrated_surface[key] = value

            #################################################################
            # Clear the group, if it exits
            try:
                del calibration_file["calibrated_pixels"]
            except KeyError:
                pass

            # This group is self consistent, thus the redundancy in saved data (with respect to other group in the file)
            CalibratedPixelsGroupe = calibration_file.create_group(
                "calibrated_pixels")
            CalibratedPixelsGroupe["pixels_edges"] = pixels_edges

            # Finding spectral bounds for each pixel
            pixels_spectral_bounds = zip(wavelengths[pixels_edges[:-1]],
                                         wavelengths[pixels_edges[1:]])

            # Pulse shaper pixel bounds
            pixels_bounds = zip(pixels_edges_num[:-1], pixels_edges_num[1:])

            PixelsGroup = CalibratedPixelsGroupe.create_group("pixels")
            for pixel_num, master_mask_calibration, slave_mask_calibration, \
             spectral_bound, pixel_bound in zip( range(len(master_mask_fits)), \
               master_mask_fits, slave_mask_fits, pixels_spectral_bounds, pixels_bounds  ) :
                pixel = PixelsGroup.create_group("pixel_%d" % pixel_num)
                pixel["spectral_bound"] = spectral_bound
                pixel["pixel_bound"] = pixel_bound
                # Saving fitted calibration data in the tabular form
                pixel["voltage_master_mask"] = master_mask_calibration[0]
                pixel["phase_master_mask"] = master_mask_calibration[1]
                pixel["voltage_slave_mask"] = slave_mask_calibration[0]
                pixel["phase_slave_mask"] = slave_mask_calibration[1]

        ################ Plotting results of calibration ####################
        visvis.cla()
        visvis.clf()

        visvis.subplot(2, 2, 1)
        visvis.imshow(master_mask_scans, cm=visvis.CM_JET)
        visvis.title("Master mask (measured data)")
        visvis.ylabel('voltage')
        visvis.xlabel('wavelength (nm)')

        visvis.subplot(2, 2, 3)
        visvis.imshow(master_mask_TC_fitted, cm=visvis.CM_JET)
        visvis.title("Master mask (fitted data)")
        visvis.ylabel('voltage')
        visvis.xlabel('wavelength (nm)')

        visvis.subplot(2, 2, 2)
        visvis.imshow(slave_mask_scans, cm=visvis.CM_JET)
        visvis.title("Slave mask (measured data)")
        visvis.ylabel('voltage')
        visvis.xlabel('wavelength (nm)')

        visvis.subplot(2, 2, 4)
        visvis.imshow(slave_mask_TC_fitted, cm=visvis.CM_JET)
        visvis.title("Slave mask (fitted data)")
        visvis.ylabel('voltage')
        visvis.xlabel('wavelength (nm)')
コード例 #24
0
# Smooth a bit
im = lena.copy()
im[1:,:,:] = lena[:-1,:,:]
im[:-1,:,:] += lena[1:,:,:]
im[:,:-1,:] += lena[:,1:,:]
im[:,1:,:] += lena[:,:-1,:]
im /= 4

# Prepare figure
vv.figure()

# Without color, with colormap
a1 = vv.subplot(121)
m1 = vv.surf(im[:,:,0])
m1.colormap = vv.CM_HOT
vv.title('With colormap')

# With color
a2 = vv.subplot(122)
m2 = vv.surf(im[:,:,0], im)
vv.title('With original texture')

# Flip y-axis, otherwise the image is upside down
a1.daspect = 1,-1,1
a2.daspect = 1,-1,1

# Enter mainloop
app=vv.use()
app.Run()
コード例 #25
0
ファイル: vis.py プロジェクト: almarklein/stentseg
def showModelsStatic(ptcode,codes, vols, ss, mm, vs, showVol, clim, isoTh, clim2, 
    clim2D, drawMesh=True, meshDisplacement=True, drawModelLines=True, 
    showvol2D=False, showAxis=False, drawVessel=False, vesselType=1,
    meshColor=None, **kwargs):
    """ show one to four models in multipanel figure. 
    Input: arrays of codes, vols, ssdfs; params from show_models_static
    Output: axes, colorbars 
    """
    # init fig
    f = vv.figure(1); vv.clf()
    # f.position = 0.00, 22.00,  1920.00, 1018.00
    mw = 5
    if drawMesh == True:
        lc = 'w'
        meshColor = meshColor
    else:
        lc = 'g'
    # create subplots
    if isinstance(codes, str): # if 1 ctcode, otherwise tuple of strings
        a1 = vv.subplot(111)
        axes = [a1]
    elif codes == (codes[0],codes[1]):
        a1 = vv.subplot(121)
        a2 = vv.subplot(122)
        axes = [a1,a2]
    elif codes == (codes[0],codes[1], codes[2]):
        a1 = vv.subplot(131)
        a2 = vv.subplot(132)
        a3 = vv.subplot(133)
        axes = [a1,a2,a3]
    elif codes == (codes[0],codes[1], codes[2], codes[3]):
        a1 = vv.subplot(141)
        a2 = vv.subplot(142)
        a3 = vv.subplot(143)
        a4 = vv.subplot(144)
        axes = [a1,a2,a3,a4]
    elif codes == (codes[0],codes[1], codes[2], codes[3], codes[4]):
        a1 = vv.subplot(151)
        a2 = vv.subplot(152)
        a3 = vv.subplot(153)
        a4 = vv.subplot(154)
        a5 = vv.subplot(155)
        axes = [a1,a2,a3,a4,a5]
    else:
        a1 = vv.subplot(111)
        axes = [a1]
    for i, ax in enumerate(axes):
        ax.MakeCurrent()
        vv.xlabel('x (mm)');vv.ylabel('y (mm)');vv.zlabel('z (mm)')
        vv.title('Model for LSPEAS %s  -  %s' % (ptcode[7:], codes[i]))
        t = show_ctvolume(vols[i], ss[i].model, axis=ax, showVol=showVol, clim=clim, isoTh=isoTh, **kwargs)
        label = pick3d(ax, vols[i])
        if drawModelLines == True:
            ss[i].model.Draw(mc='b', mw = mw, lc=lc)
    if showvol2D:
        for i, ax in enumerate(axes):
            t2 = vv.volshow2(vols[i], clim=clim2D, axes=ax)
    cbars = [] # colorbars
    if drawMesh:
        for i, ax in enumerate(axes):
            m = vv.mesh(mm[i], axes=ax)
            if meshDisplacement:
                m.clim = clim2
                m.colormap = vv.CM_JET #todo: use colormap Viridis or Magma as JET is not linear (https://bids.github.io/colormap/)
                cb = vv.colorbar(ax)
                cbars.append(cb)
            elif meshColor is not None:
                if len(meshColor) == 1:
                    m.faceColor = meshColor[0] # (0,1,0,1)
                else:
                    m.faceColor = meshColor[i]
            else:
                m.faceColor = 'g'
    if drawVessel:
        for i, ax in enumerate(axes):
            v = showVesselMesh(vs[i], ax, type=vesselType)
    for ax in axes:
        ax.axis.axisColor = 1,1,1
        ax.bgcolor = 25/255,25/255,112/255 # midnightblue
        # http://cloford.com/resources/colours/500col.htm
        ax.daspect = 1, 1, -1  # z-axis flipped
        ax.axis.visible = showAxis
    # set colorbar position
    for cbar in cbars:
        p1 = cbar.position
        cbar.position = (p1[0], 20, p1[2], 0.98) # x,y,w,h
    
    # bind rotate view and view presets [1,2,3,4,5]
    f = vv.gcf()
    f.eventKeyDown.Bind(lambda event: _utils_GUI.RotateView(event,axes,axishandling=False) )
    f.eventKeyDown.Bind(lambda event: _utils_GUI.ViewPresets(event,axes) )
    
    return axes, cbars
コード例 #26
0
ファイル: vis.py プロジェクト: almarklein/stentseg
def showVolPhases(basedir, vols=None, ptcode=None, ctcode=None, cropname=None, 
    showVol='iso', mipIsocolor=False, isoTh=310,
            slider=False, clim=(0,3000), clim2D=(-550, 500), fname=None):
    """ Show vol phases in motion container
    showVol= mip or iso or 2D; Provide either vols or location
    """
    if vols is None:
        # Load volumes
        s = loadvol(basedir, ptcode, ctcode, cropname, 'phases', fname=fname)
        vols = []
        for key in dir(s):
            if key.startswith('vol'):
                vols.append(s[key])
        
    # Start vis
    f = vv.figure(1); vv.clf()
    f.position = 9.00, 38.00,  992.00, 944.00
    a = vv.gca()
    a.daspect = 1, 1, -1
    a.axis.axisColor = 1,1,1
    a.axis.visible = False
    a.bgcolor = 0,0,0
    if showVol=='mip':
        if not ptcode is None and not ctcode is None:
            vv.title('Maximum intensity projection cine-loop of the original ECG-gated CT volumes of patient %s at %s ' % (ptcode[8:], ctcode))
        else:
            vv.title('Maximum intensity projection cine-loop of the original ECG-gated CT volumes ')
    else:
        if not ptcode is None and not ctcode is None:
            vv.title('ECG-gated CT scan cine-loop of the original ECG-gated CT volumes of patient %s at %s ' % (ptcode[8:], ctcode))
        else:
            vv.title('ECG-gated CT scan cine-loop of the original ECG-gated CT volumes ')
    
    # Setup data container
    container = vv.MotionDataContainer(a)
    for vol in vols:
        if showVol == '2D':
            t = vv.volshow2(vol, clim=clim2D) # -750, 1000
            t.parent = container
        else:
            t = vv.volshow(vol, clim=clim, renderStyle = showVol)
            t.parent = container
            if showVol == 'iso':
                t.isoThreshold = isoTh    # iso or mip work well 
                t.colormap = {'r': [(0.0, 0.0), (0.17727272, 1.0)],
                            'g': [(0.0, 0.0), (0.27272728, 1.0)],
                            'b': [(0.0, 0.0), (0.34545454, 1.0)],
                            'a': [(0.0, 1.0), (1.0, 1.0)]}
            if mipIsocolor:
                t.colormap = {'r': [(0.0, 0.0), (0.17727272, 1.0)],
                            'g': [(0.0, 0.0), (0.27272728, 1.0)],
                            'b': [(0.0, 0.0), (0.34545454, 1.0)],
                            'a': [(0.0, 1.0), (1.0, 1.0)]}
    # bind ClimEditor to figure
    if slider:
        if showVol=='mip':
            c = vv.ClimEditor(vv.gcf())
            c.position = (10, 50)
            f.eventKeyDown.Bind(lambda event: _utils_GUI.ShowHideSlider(event, c) )
        if showVol=='iso':
            c = IsoThEditor(vv.gcf())
            c.position = (10, 50)
            f.eventKeyDown.Bind(lambda event: _utils_GUI.ShowHideSlider(event, c) )
    
    f.eventKeyDown.Bind(lambda event: _utils_GUI.ViewPresets(event, [a]) )
    print('------------------------')
    print('Use keys 1, 2, 3, 4 and 5 for preset anatomic views')
    print('Use v for a default zoomed view')
    print('Use x to show and hide axis')
    print('------------------------')
    
    return t
コード例 #27
0
# Step B: Crop and Save SSDF
vols = [vol]
for cropname in cropnames:
    savecropvols(vols, ssdf_basedir, ptcode, ctcode, cropname, stenttype)


## Visualize result

s1 = loadvol(ssdf_basedir, ptcode, ctcode, cropnames[0], what ='phase')
vol = s1.vol

# Visualize and compare
colormap = {'r': [(0.0, 0.0), (0.17727272, 1.0)],
 'g': [(0.0, 0.0), (0.27272728, 1.0)],
 'b': [(0.0, 0.0), (0.34545454, 1.0)],
 'a': [(0.0, 1.0), (1.0, 1.0)]}
 
import visvis as vv
fig = vv.figure(1); vv.clf()
fig.position = 0, 22, 1366, 706
a = vv.gca()
a.daspect = 1,1,-1
t1 = vv.volshow(vol, clim=(0, 2500), renderStyle='iso') # iso or mip
t1.isoThreshold = 400
t1.colormap = colormap
t2 = vv.volshow2(vol, clim=(-550, 500))
vv.xlabel('x'), vv.ylabel('y'), vv.zlabel('z')
# vv.title('One volume at %i procent of cardiac cycle' % phase )
vv.title('Static CT Volume' )
コード例 #28
0
axes = []
# 1 model
if codes == ctcode1:
    ax = drawmodelphasescycles(vol1,
                               model1,
                               modelori1,
                               showVol,
                               isoTh=isoTh,
                               removeStent=removeStent,
                               showmodelavgreg=showmodelavgreg,
                               showvol=showvol,
                               phases=phases,
                               colors=colors,
                               meshWithColors=meshWithColors,
                               stripSizeZ=stripSizeZ)
    vv.title('Model for LSPEAS %s  -  %s' % (ptcode[7:], ctcode1))
    axes.append(ax)

# 2 models
if len(codes) == 2:
    a1 = vv.subplot(121)
    ax = drawmodelphasescycles(vol1,
                               model1,
                               modelori1,
                               showVol,
                               isoTh=isoTh,
                               removeStent=removeStent,
                               showmodelavgreg=showmodelavgreg,
                               showvol=showvol,
                               phases=phases,
                               colors=colors,
コード例 #29
0
    s = ssdf.load(
        '/home/almar/data/dicom/cropped/croppedReg_pat01_gravity.bsdf')
    vol = s.vol

##

# Create figure and make subplots with different renderers
vv.figure(1)
vv.clf()
RS = ['mip', 'iso', 'edgeray', 'ray', 'litray']
a0 = None
tt = []
for i in range(5):
    a = vv.subplot(3, 2, i + 2)
    t = vv.volshow(vol)
    vv.title('Renderstyle ' + RS[i])
    t.colormap = vv.CM_HOT  #vv.CM_CT1
    t.renderStyle = RS[i]
    tt.append(t)
    if a0 is None:
        a0 = a
    else:
        a.camera = a0.camera

# Create colormap editor in first axes
cme = vv.ColormapEditor(vv.gcf(), *tt[3:])

# Run app
app.Create()
app.Run()
コード例 #30
0
ファイル: _show_model.py プロジェクト: almarklein/stentseg
## Start vis
f = vv.figure(nr); vv.clf()
if nr == 1:
    f.position = 8.00, 30.00,  1216.00, 960.00
else:
    f.position = 968.00, 30.00,  1216.00, 960.00
a = vv.gca()
a.axis.axisColor = 1,1,1
a.axis.visible = False
a.bgcolor = 0,0,0
a.daspect = 1, 1, -1
t = show_ctvolume(vol, model, showVol=showVol, clim=clim0, isoTh=isoTh)
vv.xlabel('x (mm)');vv.ylabel('y (mm)');vv.zlabel('z (mm)')
if meshWithColors=='displacement':
    vv.title('Dynamic model for patient %s at %s  (colorbar \b{%s} of motion in mm in %s)' % (ptcode[7:], ctcode, motion, dimension))
elif meshWithColors=='curvature':
    vv.title('Dynamic model for patient %s at %s  (colorbar \b{%s} in cm^{-1})' % (ptcode[7:], ctcode, 'curvature change'))
else:
    vv.title('Dynamic model for patient %s at %s ' % (ptcode[7:], ctcode))
    
# viewringcrop = {'daspect': (1.0, 1.0, -1.0), 'azimuth': 32.9516129032258, 
# 'elevation': 14.162658990412158, 'roll': 0.0, 
# 'loc': (166.79323747325407, 162.4692971514962, 52.28745470591859), 
# 'fov': 0.0, 'zoom': 0.026156241036960133}
# m = vv.mesh(modelmesh)
# # m.faceColor = 'g'
# m.clim = 0, 5
# m.colormap = vv.CM_JET

# Add motion
コード例 #31
0

class OurCamera1(vv.cameras.TwoDCamera):
    _NAMES = ('our1', 8)
    # a string name to be able to set cameraType
    # an int so it has an index, allowing changing the camera via a shortcut


class OurCamera2(vv.cameras.TwoDCamera):
    _NAMES = ('our2', 9)


# Draw an image
im = vv.imread('lena.png')
vv.imshow(im)
vv.title('Press ALT+8 for cam1 and ALT+9 for cam2')

# Get axes
a = vv.gca()

# Add cameras and select the first
a.camera = OurCamera1()
a.camera = OurCamera2()
a.cameraType = 'our1'  # We can do this because we set the _NAMES attribute

# Increase zoom
a.camera.zoom *= 2

# Enter mainloop
app = vv.use()
app.Run()
コード例 #32
0
#!/usr/bin/env python
""" This example illustrates how to create an isocontour from an image
and display it over the contour. The contour consists of a pointset
in which each 2 subsequent points describe a linepiece.

This code relies on scikit-image. For a possibly more useful representation
of the contour, see skimage.measure.find_contours.
"""

import visvis as vv

im = vv.imread('imageio:chelsea.png')[:, :, 1]
pp = vv.isocontour(im)

vv.figure(1)
vv.clf()
vv.imshow(im)
vv.plot(pp, ls='+', lw=2)

vv.title('Isocontour')
app = vv.use()
app.Run()
コード例 #33
0
ファイル: title.py プロジェクト: binaryannamolly/visvis
    text : string
        The text to display.
    axes : Axes instance
        Display the image in this axes, or the current axes if not given.
    
    """
    
    if axes is None:
        axes = vv.gca()
    
    # seek Title object
    for child in axes.children:
        if isinstance(child, vv.Title):
            ob = child
            ob.text = text
            break
    else:
        ob = vv.Title(axes, text)
    
    # destroy if no text, return object otherwise
    if not text:
        ob.Destroy()
        return None
    else:
        return ob


if __name__=='__main__':
    a = vv.gca()
    vv.title('test title')
コード例 #34
0
                         volOr.shape[0]), :, :]  # pick a z slice in mid volume
        imTr = volTr[int(0.5 * volOr.shape[0]), :, :]
        sampling2 = sampling2[1:]  # keep y,x
        origin2 = origin2[1:]
        vols = [imOr, imTr]

    if visualize:
        f = vv.figure(1)
        vv.clf()
        f.position = 0.00, 22.00, 1914.00, 1018.00
        if reg2d:
            clim = (-500, 500)
            a1 = vv.subplot(221)
            vv.imshow(imOr, clim=clim)
            vv.xlabel('x'), vv.ylabel('y'), vv.zlabel('z')
            vv.title('Im1:Original (DataDressed)')
            a1.daspect = 1, 1, -1

            a2 = vv.subplot(222)
            vv.imshow(imOr, clim=clim)
            vv.imshow(imTr, clim=clim)
            vv.xlabel('x'), vv.ylabel('y'), vv.zlabel('z')
            vv.title('Overlay')
            a2.daspect = 1, 1, -1

            a3 = vv.subplot(223)
            vv.imshow(imTr, clim=clim)
            vv.xlabel('x'), vv.ylabel('y'), vv.zlabel('z')
            vv.title(
                'Im2:Original transformed (DataDressedInterpolated u_\magnitude {})'
                .format(mat2['u_magnitude'][0][0]))
コード例 #35
0
	def DoScannning (self, event) :
		"""
		Perform scanning of different phase mask 
		"""
		# Create pseudonyms of necessary devices 
		self.DevSpectrometer 	= self.parent.Spectrometer.dev
		self.DevPulseShaper		= self.parent.PulseShaper.dev
		self.DevSampleSwitcher	= self.parent.SampleSwitcher.dev
			
		# Save global settings and get the name of log file
		self.log_filename = SaveSettings(SettingsNotebook=self.parent, 
								title="Select file to save phase mask scanning", filename="scanning_phase_mask.hdf5")
		if self.log_filename is None : return
		
		####################### Initiate devices #############################
		
		# Initiate spectrometer
		settings = self.parent.Spectrometer.GetSettings()
		if self.DevSpectrometer.SetSettings(settings) == RETURN_FAIL : return
		
		# Initiate pulse shaper
		settings = self.parent.PulseShaper.GetSettings()
		if self.DevPulseShaper.Initialize(settings) == RETURN_FAIL : return
		
		# Get number of optimization variables 
		self.num_pixels = self.DevPulseShaper.GetParamNumber()
		if self.num_pixels == RETURN_FAIL :
			raise RuntimeError ("Optimization cannot be started since calibration file was not loaded")
		
		# Initiate sample switcher
		settings = self.parent.SampleSwitcher.GetSettings()
		if self.DevSampleSwitcher.Initialize(settings) == RETURN_FAIL : return
		
		# Saving the name of channels 
		odd_settings = self.GetSettings()
		self.channels = sorted(eval( "(%s,)" % odd_settings["channels"] ))
		if self.DevSampleSwitcher.GetChannelNum()-1 < max(self.channels) :
			raise ValueError ("Error: Some channels specified are not accessible by sample switcher.")
		
		# Check whether the background signal array is present
		self.CheckBackground()
		
		#####################################################################
		
		# Get range of coefficient 
		coeff_range = np.linspace( odd_settings["coeff_min"], odd_settings["coeff_max"], odd_settings["coeff_num"] )
		
		# List all polynomial coefficients
		N = odd_settings["polynomial_order"]
		poly_coeffs = np.zeros( (coeff_range.size*N, N+1) )
		for n in range(1,N+1) :
			poly_coeffs[(n-1)*coeff_range.size:n*coeff_range.size, n ] = coeff_range
		
		# Chose max amplitude
		max_ampl = odd_settings["max_ampl"]*np.ones(self.num_pixels)
		
		# Arguments of the basis 
		X = np.linspace(-1., 1., self.num_pixels)
		
		# Retrieve the basis type
		polynomial_basis = self.polynomial_bases[ odd_settings["polynomial_basis"] ]
		
		# Adjusting button's settings
		button = event.GetEventObject()
		button.SetLabel (button._stop_label)
		button.SetBackgroundColour('red')
		button.Bind( wx.EVT_BUTTON, button._stop_method)
		self.need_abort = False
		
		#####################################################################
		
		# Start scanning
		with  h5py.File (self.log_filename, 'a') as log_file :
			for channel in self.channels :
				# Move to a selected channel 
				self.DevSampleSwitcher.MoveToChannel(channel)
		
				# abort, if requested 
				wx.Yield()
				if self.need_abort : break
				
				# Looping over pulse shapes
				for scan_num, coeff in enumerate(poly_coeffs) :
				
					# Calculate new phase
					phase = polynomial_basis(coeff)(X)
				
					# Set the pulse shape
					self.DevPulseShaper.SetAmplPhase(max_ampl, phase) 
		
					# Save phase in radians 
					ampl, phase = self.DevPulseShaper.GetUnwrappedAmplPhase(max_ampl, phase)
					if scan_num == 0 :
						# Initialize the array
						phases_rad = np.zeros( (len(poly_coeffs), phase.size), dtype=phase.dtype )
						amplitudes = np.zeros_like(phases_rad)
						amplitudes[:] = ampl.min()
					
					# Save phase
					phases_rad[scan_num] = phase
					amplitudes[scan_num] = ampl
					
					# abort, if requested 
					wx.Yield()
					if self.need_abort : break
					
					# Get spectrum
					spectrum = self.GetSampleSpectrum(channel)
					# Vertical binning
					spectrum = ( spectrum.sum(axis=0) if len(spectrum.shape) == 2 else spectrum )
					
					if scan_num == 0 :
						# Initialize the array
						spectra = np.zeros( (len(poly_coeffs), spectrum.size), dtype=spectrum.dtype )
						spectra[:] = spectrum.min()
						
					# Save the spectrum
					spectra[scan_num] = spectrum
					
					# Display the currently acquired data
					try : 
						spectra_2d_img.SetData(spectra)
						phases_rad_2d_img.SetData( phases_rad%(2*np.pi) )
						#amplitudes_2d_img.SetData( amplitudes )
					except NameError :
						visvis.cla(); visvis.clf()
						
						visvis.subplot(121)
						spectra_2d_img = visvis.imshow(spectra, cm=visvis.CM_JET)
						visvis.ylabel ('scans'); visvis.xlabel ('wavelegth')
						visvis.title("spectral scan")
						
						visvis.subplot(122)
						phases_rad_2d_img = visvis.imshow( phases_rad%(2*np.pi), cm=visvis.CM_JET)
						visvis.title("phase shapes")
						
						#visvis.subplot(133)
						#amplitudes_2d_img = visvis.imshow(amplitudes, cm=visvis.CM_JET)
						#visvis.title("amplitudes")
						
				# Save the data for the given channel
				try : del log_file[ str(channel) ]
				except KeyError : pass
				
				channel_grp = log_file.create_group( str(channel) )
				channel_grp["spectra"] 		= spectra
				channel_grp["phases_rad"]	= phases_rad
				channel_grp["amplitudes"]	= amplitudes
				channel_grp["poly_coeffs"]	= poly_coeffs
				
		# Readjust buttons settings
		self.StopScannning(event)
コード例 #36
0
"""

import visvis as vv

class OurCamera1(vv.cameras.TwoDCamera):
    _NAMES = ('our1', 8)
    # a string name to be able to set cameraType
    # an int so it has an index, allowing changing the camera via a shortcut

class OurCamera2(vv.cameras.TwoDCamera):
    _NAMES = ('our2', 9)

# Draw an image    
im = vv.imread('lena.png')
vv.imshow(im)
vv.title('Press ALT+8 for cam1 and ALT+9 for cam2')

# Get axes
a = vv.gca()

# Add cameras and select the first
a.camera = OurCamera1()
a.camera = OurCamera2()
a.cameraType = 'our1' # We can do this because we set the _NAMES attribute

# Increase zoom 
a.camera.zoom *= 2

# Enter mainloop
app = vv.use()
app.Run()
コード例 #37
0
ファイル: text.py プロジェクト: toddrme2178/visvis
t3 = vv.Text(a, 'Look, I\'m at an angle, and red!', 1, 4)
t3.textAngle = -20
t3.fontSize = 12
t3.textColor = "r"

# Create text labels
label1 = vv.Label(a, 'This is a Label')
label1.position = 10, 0.9
label1.bgcolor = (0.5, 1, 0.5)

## A quick brown fox jumps over the lazy dog

testText = 'A quick brown fox jumps over the lazy dog'

# Create figure and figure
fig = vv.figure()
a = vv.cla()
a.cameraType = '2d'

vv.title(testText)
# Create text labels
for i in range(20):
    offset = 0.1 * i
    label = vv.Label(a, '| ' + testText + ' - %1.2f pixels offset' % offset)
    label.bgcolor = None
    label.position = 10 + 0.1 * i, 10 + i * 15

# Enter main loop
app = vv.use()
app.Run()
コード例 #38
0
    def title(self, value): vv.title(value)

    @property
コード例 #39
0
	def title(self, value): vv.title(value)

	@property
コード例 #40
0
    def FitSpectralScans(self, scans, voltages, pixels_edges):
        """
		Perform fitting to the pulse shaper's mask transmission coefficient 
		"""
        def FitIndividualPixel(voltages, pixel, modulation, p0=None):
            """
			Find fit for individual pixel with initial guess for phase function given by `modulation`.
			`voltages` voltage values for which `pixel` was measured
			`pixel` measured transmission (to be fitted) 
			`p0` is the initial guess for fitting parametres
			"""
            def GetVM(V0, V1, m0, m1):
                """
				Return voltage and phase modulation from parameters
				"""
                M = m0 + m1 * modulation
                V = np.linspace(V0, V1, M.size)
                return V, M

            def FittedTransmission(voltages, offset, amplitude, *params):
                """
				Return the transmission function for a shaper
				"""
                V, M = GetVM(*params)
                return amplitude * np.cos(pchip_interpolate(
                    V, M, voltages))**2 + offset

            # Set fitting parameters to their default values
            if p0 is None:
                p0 = [0., 1., voltages.min(), voltages.max(), 0., 1.]

            # Fitting the transmission
            try:
                popt, _ = curve_fit(FittedTransmission, voltages, pixel, p0=p0)
            except RuntimeError:
                popt = p0

            # Get fitting error
            fitting_error = np.sum(
                (FittedTransmission(voltages, *popt) - pixel)**2)

            return fitting_error, GetVM(*popt[2:]), popt

        ############################################################################
        # Selecting the voltage range
        V_min = max(voltages_trial.min(), voltages.min())
        V_max = min(voltages_trial.max(), voltages.max())
        indx = np.nonzero((V_min <= voltages) & (voltages <= V_max))

        # Number of calibration points lying within the voltage region
        num_vol_trial = np.sum((V_min <= voltages_trial)
                               & (voltages_trial <= V_max))
        if num_vol_trial < 2: num_vol_trial = 2

        # Re-sample modulation provided by CRi so that the voltage is equidistantly spaced
        resampled_vis_modulation = pchip_interpolate(
            voltages_trial, vis_modulation,
            np.linspace(V_min, V_max, min(len(voltages), num_vol_trial)))
        resampled_nir_modulation = pchip_interpolate(
            voltages_trial, nir_modulation,
            np.linspace(V_min, V_max, min(len(voltages), num_vol_trial)))

        # Normalizing scans
        scans -= scans.min(axis=0)
        scans /= scans.max(axis=0)

        # Bin the spectrum into pixels
        spectral_slices = map(
            lambda begin, end: scans[:, begin:end].mean(axis=1),
            pixels_edges[:-1], pixels_edges[1:])

        # List containing calibration data for each pixel
        calibration = []

        # Initial guesses for fitting
        vis_p0 = None
        nir_p0 = None

        # Fit individual pulse shaper pixels them
        for pixel_num, pixel in enumerate(spectral_slices):

            # Smoothing and normalizing each pixel
            #pixel = gaussian_filter(pixel,sigma=1)
            pixel -= pixel.min()
            pixel /= pixel.max()

            # Fit the pixel by using the vis calibration curve as the initial guess
            vis_err, vis_calibration, vis_p0 = FitIndividualPixel(
                voltages[indx], pixel[indx], resampled_vis_modulation, vis_p0)

            # Fit the pixel by using the nir calibration curve as the initial guess
            nir_err, nir_calibration, nir_p0 = FitIndividualPixel(
                voltages[indx], pixel[indx], resampled_nir_modulation, nir_p0)

            # Choose the best fit
            if nir_err > vis_err:
                calibation_voltage, calibration_phase = vis_calibration
                fit_err = vis_err
            else:
                calibation_voltage, calibration_phase = nir_calibration
                fit_err = nir_err

            ###################### Plot ########################
            visvis.clf()

            # Plot measured data
            visvis.plot(voltages, pixel, lc='r', ms='*', mc='r')

            # Plot fitted data
            plot_voltages = np.linspace(calibation_voltage.min(),
                                        calibation_voltage.max(), 500)
            transmission_fit = np.cos(
                pchip_interpolate(calibation_voltage, calibration_phase,
                                  plot_voltages))**2
            visvis.plot(plot_voltages, transmission_fit, lc='b')

            visvis.title('Calibrating pixel %d / %d' %
                         (pixel_num, len(spectral_slices) - 1))
            visvis.legend(['measured', 'fitted'])
            visvis.xlabel('voltages')
            visvis.ylabel('Transmission coefficient')

            self.fig.DrawNow()
            ############ Save the calibration data ##################
            calibration.append(
                (calibation_voltage, calibration_phase, fit_err))

        return calibration
コード例 #41
0
    if mark == True:
        ax.plot([0, 0], [0, amax], 'b', ls='-', marker='_')
        ax.plot([T, T], [0, amax], 'b', ls='-', marker='_')
        ax.plot([2 * T, 2 * T], [0, amax], 'b', ls='-', marker='_')


if __name__ == '__main__':
    # Show examples

    import visvis as vv

    vv.figure(1)
    vv.clf()

    a0 = vv.subplot(321)
    vv.title('default')
    plot_pattern(*get_motion_pattern())

    a1 = vv.subplot(322)
    vv.title('A=2')
    plot_pattern(*get_motion_pattern(A=2))

    a2 = vv.subplot(323)
    vv.title('T=0.6')
    plot_pattern(*get_motion_pattern(T=0.6))

    a3 = vv.subplot(324)
    vv.title('N=10')
    plot_pattern(*get_motion_pattern(N=10))
    a3.axis.showGrid = True
コード例 #42
0
ファイル: dash_vv.py プロジェクト: patinnc/oppat
#im2 = im
# Create new camera and attach
#cam = vv.cameras.TwoDCamera()
#a1.camera = cam

for i in range(0, use_len):
    j = uval[i][1]
    im[:y1i+y0i,i*x1i:(i+1)*x1i] = img_lst[j][:y1i+y0i,:x1i]
    #x, y = (0, 288-fsz)
    #text = "Display "+bmarkf+" sub-benchmark for interval, BW"
    #txt = ("GIPS: %.3f bill instr/sec" % uval[i][0])
    #w, h = font.getsize(text)
    #drawd.rectangle((x, y, x + w + 2*rct_brdr, y + h), fill='black')
    #drawd.text((x+rct_brdr, y), text, fill='white', font=font)
    #vv.Text(a1, txt, i*x1i, 20, 0, 'mono', 10)
vv.title("hi")

#t1 = vv.Text(im2, 'Visvis text', 0.2, 9, 0, 'mono', 30)
#vv.Label(im2, '| ' + 'hime'+ ' - %1.2f pixels offset' % offset)

# Create figure with two axes


##label1 = vv.Label(a1, 'This is a Label')
##label1.position = 10, 10
##label1.bgcolor = (0.5, 1, 0.5)
#t1 = vv.Text(a1, 'Visvis text', 0.2, 0, 0, 'mono', 20)

#t = vv.imshow(im2, axes=a1)
t = vv.imshow(im)
t.aa = 2 # more anti-aliasing (default=1)
コード例 #43
0
 def set_title(self, title):
     vv.title(title.replace('\n', ' '))
コード例 #44
0
    def __init__(self,ptcode,ctcode,allcenterlines,basedir):
        """
        Script to show the stent plus centerline model and select points on 
        centerlines for motion analysis 
        """
        import os, time
        import pirt
        import visvis as vv
        import numpy as np
        import math
        import itertools
        import xlsxwriter
        from datetime import datetime

                
        from stentseg.utils.datahandling import select_dir, loadvol, loadmodel
        from stentseg.utils.new_pointset import PointSet
        from stentseg.stentdirect.stentgraph import create_mesh
        from stentseg.motion.vis import create_mesh_with_abs_displacement
        from stentseg.utils.visualization import show_ctvolume
        from pirt.utils.deformvis import DeformableTexture3D, DeformableMesh
        from stentseg.utils import PointSet
        from stentseg.stentdirect import stentgraph
        from visvis import Pointset # for meshes
        from stentseg.stentdirect.stentgraph import create_mesh
        from visvis.processing import lineToMesh, combineMeshes
        from visvis import ssdf
        from stentseg.utils.picker import pick3d
        try:
            from PyQt4 import QtCore, QtGui # PyQt5
        except ImportError:
            from PySide import QtCore, QtGui # PySide2
        from stentseg.apps.ui_dialog import MyDialog
        from stentseg.utils.centerline import dist_over_centerline # added for Mirthe 
        import copy
        
        
        cropname = 'prox'
        
        exceldir = os.path.join(basedir,ptcode)
        
        # Load deformations and avg ct (forward for mesh)
        # centerlines combined in 1 model
        m = loadmodel(basedir, ptcode, ctcode, cropname, modelname = 'centerline_total_modelavgreg_deforms') 
        model = m.model
        # centerlines separated in a model for each centerline
        # m_sep = loadmodel(basedir, ptcode, ctcode, cropname, modelname = 'centerline_modelavgreg_deforms')
        s = loadvol(basedir, ptcode, ctcode, cropname, what='avgreg')
        vol_org = copy.deepcopy(s.vol)
        s.vol.sampling = [vol_org.sampling[1], vol_org.sampling[1], vol_org.sampling[2]]
        s.sampling = s.vol.sampling
        vol = s.vol
        
        # Start visualization and GUI
        
        fig = vv.figure(30); vv.clf()
        
        fig.position = 0.00, 30.00,  944.00, 1002.00
        a = vv.gca()
        a.axis.axisColor = 1,1,1
        a.axis.visible = True
        a.bgcolor = 0,0,0
        a.daspect = 1, 1, -1
        lim = 2500
        t = vv.volshow(vol, clim=(0, lim), renderStyle='mip')
        pick3d(vv.gca(), vol)
        b = model.Draw(mc='b', mw = 0, lc='g', alpha = 0.5)
        vv.xlabel('x (mm)');vv.ylabel('y (mm)');vv.zlabel('z (mm)')
        vv.title('Model for LSPEAS %s  -  %s' % (ptcode[7:], ctcode))
        
        # Add clickable nodes
        t0 = time.time()
        node_points = []
        for i, node in enumerate(sorted(model.nodes())):
            node_point = vv.solidSphere(translation = (node), scaling = (0.6,0.6,0.6))
            node_point.faceColor = 'b'
            node_point.alpha = 0.5
            node_point.visible = True
            node_point.node = node
            node_point.nr = i
            node_points.append(node_point)
        t1 = time.time()
        print('Clickable nodes created, which took %1.2f min.' % ((t1-t0)/60))
        
        # list of correctly clicked nodes
        selected_nodes_sum = set()
        
        # Initialize labels
        t0 = vv.Label(a, '\b{Node nr|location}: ', fontSize=11, color='w')
        t0.position = 0.1, 25, 0.5, 20  # x (frac w), y, w (frac), h
        t0.bgcolor = None
        t0.visible = True
        t1 = vv.Label(a, '\b{Nodepair}: ', fontSize=11, color='w')
        t1.position = 0.1, 45, 0.5, 20
        t1.bgcolor = None
        t1.visible = True
        
        # Initialize output variable to store pulsatility analysis
        storeOutput = list()
        
        
        def on_key(event): 
            if event.key == vv.KEY_ENTER:
                
                # mogenlijkheden aantal nodes 
                    # 1 voor relative beweging vanuit avg punt
                    # 2 voor onderlinge beweging tussen twee punten
                    # 3 voor hoek in punt 2 van punt 1 naar punt 3
                    
                if len(selected_nodes) == 1:
                    selectn1 = selected_nodes[0].node
                    n1index = selected_nodes[0].nr
                    n1Deforms = model.node[selectn1]['deforms']
                    output = point_pulsatility(selectn1, n1Deforms)
                    output['NodesIndex'] = [n1index]
                    
                    # Store output with name
                    dialog_output = get_index_name()
                    output['Name'] = dialog_output
                    storeOutput.append(output)
                    
                    # update labels
                    t1.text = '\b{Node}: %i' % (n1index)
                    t1.visible = True
                    print('selection of 1 node stored')

                if len(selected_nodes) == 2:
                    # get nodes
                    selectn1 = selected_nodes[0].node
                    selectn2 = selected_nodes[1].node
                    # get index of nodes which are in fixed order
                    n1index = selected_nodes[0].nr
                    n2index = selected_nodes[1].nr
                    nindex = [n1index, n2index]
                    # get deforms of nodes
                    n1Deforms = model.node[selectn1]['deforms']
                    n2Deforms = model.node[selectn2]['deforms']
                    # get pulsatility
                    cl_merged = append_centerlines(allcenterlines) 
                    output = point_to_point_pulsatility(cl_merged, selectn1, 
                                        n1Deforms, selectn2, n2Deforms, type='euclidian')
                    output['NodesIndex'] = nindex
                    
                    # get distance_centerline
                   
                    #dist_cl = dist_over_centerline(cl_merged, selectn1, selectn2, type='euclidian') # toegevoegd Mirthe
                    
                    #dist_cl = dist_centerline_total(cl_merged, selectn1, 
                    #                    n1Deforms, selectn2, n2Deforms, type='euclidian')
                    
                    # Store output with name
                    dialog_output = get_index_name()
                    output['Name'] = dialog_output
                    storeOutput.append(output)  
                   
                    # update labels
                    t1.text = '\b{Node pair}: %i - %i' % (nindex[0], nindex[1])
                    t1.visible = True
                    print('selection of 2 nodes stored')
                        
                if len(selected_nodes) == 3:
                    # get nodes
                    selectn1 = selected_nodes[0].node
                    selectn2 = selected_nodes[1].node
                    selectn3 = selected_nodes[2].node
                    # get index of nodes which are in fixed order
                    n1index = selected_nodes[0].nr
                    n2index = selected_nodes[1].nr
                    n3index = selected_nodes[2].nr
                    nindex = [n1index, n2index, n3index]
                    # get deforms of nodes
                    n1Deforms = model.node[selectn1]['deforms']
                    n2Deforms = model.node[selectn2]['deforms']
                    n3Deforms = model.node[selectn3]['deforms']
                    # get angulation
                    output = line_line_angulation(selectn1, 
                                        n1Deforms, selectn2, n2Deforms, selectn3, n3Deforms)
                    output['NodesIndex'] = nindex
                    
                    # Store output with name
                    dialog_output = get_index_name()
                    output['Name'] = dialog_output
                    storeOutput.append(output)
                    
                    # update labels
                    t1.text = '\b{Nodes}: %i - %i - %i' % (nindex[0], nindex[1], nindex[2])
                    t1.visible = True
                    print('selection of 3 nodes stored')
                    
                if len(selected_nodes) > 3:
                    for node in selected_nodes:
                        node.faceColor = 'b'
                    selected_nodes.clear()
                    print('to many nodes selected, select 1,2 or 3 nodes')
                if len(selected_nodes) < 1:
                    for node in selected_nodes:
                        node.faceColor = 'b'
                    selected_nodes.clear()
                    print('to few nodes selected, select 1,2 or 3 nodes')                
                
                # Visualize analyzed nodes and deselect
                for node in selected_nodes:
                    selected_nodes_sum.add(node)

                for node in selected_nodes_sum:
                    node.faceColor = 'g'  # make green when analyzed
                selected_nodes.clear()
                
            if event.key == vv.KEY_ESCAPE:
                # FINISH MODEL, STORE TO EXCEL
                
                # Store to EXCEL
                storeOutputToExcel(storeOutput, exceldir)
                vv.close(fig)
                print('output stored to excel')
     
        selected_nodes = list()
        def select_node(event):
            """ select and deselect nodes by Double Click
            """
            if event.owner not in selected_nodes:
                event.owner.faceColor = 'r'
                selected_nodes.append(event.owner)
            elif event.owner in selected_nodes:
                event.owner.faceColor = 'b'
                selected_nodes.remove(event.owner)
        
        def pick_node(event):
            nodenr = event.owner.nr
            node = event.owner.node
            t0.text = '\b{Node nr|location}: %i | x=%1.3f y=%1.3f z=%1.3f' % (nodenr,node[0],node[1],node[2])
        
        def unpick_node(event):
            t0.text = '\b{Node nr|location}: '
        
        def point_pulsatility(point1, point1Deforms):
            n1Indices = point1 + point1Deforms
            pos_combinations = list(itertools.combinations(range(len(point1Deforms)),2))
            distances = []
            for i in pos_combinations:
                v = point1Deforms[i[0]] - point1Deforms[i[1]]
                distances.append(((v[0]**2 + v[1]**2 + v[2]**2)**0.5 ))
            distances = np.array(distances)
            
            # get max distance between phases
            point_phase_max = distances.max()
            point_phase_max = [point_phase_max, [x*10 for x in (pos_combinations[list(distances).index(point_phase_max)])]]
            
            # get min distance between phases
            point_phase_min = distances.min()
            point_phase_min = [point_phase_min, [x*10 for x in (pos_combinations[list(distances).index(point_phase_min)])]]
            
            return {'point_phase_min':point_phase_min,'point_phase_max': point_phase_max, 'Node1': [point1, point1Deforms]}

        def point_to_point_pulsatility(cl, point1, point1Deforms, 
                                            point2, point2Deforms,type='euclidian'):
            
            import numpy as np
            
            n1Indices = point1 + point1Deforms
            n2Indices = point2 + point2Deforms
            # define vector between nodes
            v = n1Indices - n2Indices
            distances = ( (v[:,0]**2 + v[:,1]**2 + v[:,2]**2)**0.5 ).reshape(-1,1)
            # get min and max distance
            point_to_pointMax = distances.max()
            point_to_pointMin = distances.min()
            # add phase in cardiac cycle where min and max where found (5th = 50%)
            point_to_pointMax = [point_to_pointMax, (list(distances).index(point_to_pointMax) )*10]
            point_to_pointMin = [point_to_pointMin, (list(distances).index(point_to_pointMin) )*10]
            # get median of distances
            point_to_pointMedian = np.percentile(distances, 50) # Q2
            # median of the lower half, Q1 and upper half, Q3
            point_to_pointQ1 = np.percentile(distances, 25)
            point_to_pointQ3 = np.percentile(distances, 75)
            # Pulsatility min max distance point to point
            point_to_pointP = point_to_pointMax[0] - point_to_pointMin[0]
            # add % change to pulsatility
            point_to_pointP = [point_to_pointP, (point_to_pointP/point_to_pointMin[0])*100 ]
            
            # find index of point on cll and calculate length change cll ???
            if isinstance(cl, PointSet):
                cl = np.asarray(cl).reshape((len(cl),3))
                
            indpoint1 = np.where( np.all(cl == point1, axis=-1) )[0] # -1 counts from last to the first axis
            indpoint2 = np.where( np.all(cl == point2, axis=-1) )[0] # renal point
            n1Indices = point1 + point1Deforms
            n2Indices = point2 + point2Deforms
            
            clDeforms = []
            clpart_deformed = []
            vectors = []
            clpart = []
            d = []
            dist_cl = []   
            clpartDeforms = []
            clpart_deformed_test = []
            
            for i in range(len(cl)):
                clDeforms1 = model.node[cl[i,0], cl[i,1], cl[i,2]]['deforms']
                clDeforms.append(clDeforms1)
                clpart_deformed1 = cl[i] + clDeforms1
                clpart_deformed.append(clpart_deformed1)
            
            # clpart = cl[min(indpoint1[0], indpoint2[0]):max(indpoint1[0], indpoint2[0])+1]
            
            clpart = clpart_deformed[min(indpoint1[0], indpoint2[0]):max(indpoint1[0], indpoint2[0])+1]
            
            # for i in range(len(clpart)):
            #     clpartDeforms1 = model.node[clpart[i,0], clpart[i,1], clpart[i,2]]['deforms']
            #     clpartDeforms.append(clpartDeforms1)
            #     clpart_deformed1_test = cl[i] + clpartDeforms1
            #     clpart_deformed_test.append(clpart_deformed1_test)
                
            # for k in range(len(n1Indices)):
            #     vectors_phases = np.vstack([clpart_deformed_test[i+1][k]-clpart_deformed_test[i][k] for i in range(len(clpart)-1)])
            #     vectors.append(vectors_phases)
                
            for k in range(len(n1Indices)):
                vectors_phases = np.vstack([clpart[i+1][k]-clpart[i][k] for i in range(len(clpart)-1)])
                vectors.append(vectors_phases)
            
            for i in range(len(vectors)):
                if type == 'euclidian':
                    d1 = (vectors[i][:,0]**2 + vectors[i][:,1]**2 + vectors[i][:,2]**2)**0.5  # 3Dvector length in mm
                    d.append(d1)
                elif type == 'z':
                    d = abs(vectors[i][:,2])  # x,y,z ; 1Dvector length in mm
             
            for i in range(len(d)):
                dist = d[i].sum()
                dist_cl.append(dist)
               
            #if indpoint2 > indpoint1: # stent point proximal to renal on centerline: positive
                #dist_cl*=-1
                
            cl_min_index1 = np.argmin(dist_cl)   
            cl_min_index = cl_min_index1*10
            cl_min = min(dist_cl)
            cl_max_index1 = np.argmax(dist_cl)   
            cl_max_index = cl_max_index1*10
            cl_max = max(dist_cl)
            
            print ([dist_cl])
            print ([point1, point2])
            
            return {'point_to_pointMin': point_to_pointMin, 
            'point_to_pointQ1': point_to_pointQ1, 
            'point_to_pointMedian': point_to_pointMedian, 
            'point_to_pointQ3': point_to_pointQ3, 
            'point_to_pointMax': point_to_pointMax, 
            'point_to_pointP': point_to_pointP, 
            'Node1': [point1, point1Deforms], 
            'Node2': [point2, point2Deforms], 'distances': distances, 
            'dist_cl': dist_cl, 'cl_min_index': cl_min_index, 
            'cl_max_index': cl_max_index, 'cl_min': cl_min, 'cl_max': cl_max}
            
        
        def line_line_angulation(point1, point1Deforms, point2, point2Deforms, point3, point3Deforms):
            n1Indices = point1 + point1Deforms
            n2Indices = point2 + point2Deforms
            n3Indices = point3 + point3Deforms
            
            # get vectors
            v1 = n1Indices - n2Indices
            v2 = n3Indices - n2Indices
            
            # get angles
            angles = []
            for i in range(len(v1)):
                angles.append(math.degrees(math.acos((np.dot(v1[i],v2[i]))/
                (np.linalg.norm(v1[i])*np.linalg.norm(v2[i])))))
            angles = np.array(angles)
            
            # get all angle differences of all phases
            pos_combinations = list(itertools.combinations(range(len(v1)),2))
            angle_diff = []
            for i in pos_combinations:
                v = point1Deforms[i[0]] - point1Deforms[i[1]]
                angle_diff.append(abs(angles[i[0]] - angles[i[1]]))
            angle_diff = np.array(angle_diff)
            
            # get max angle differences
            point_angle_diff_max = angle_diff.max()
            point_angle_diff_max = [point_angle_diff_max, [x*10 for x in
            (pos_combinations[list(angle_diff).index(point_angle_diff_max)])]]
            
            # get min angle differences
            point_angle_diff_min = angle_diff.min()
            point_angle_diff_min = [point_angle_diff_min, [x*10 for x in 
            (pos_combinations[list(angle_diff).index(point_angle_diff_min)])]]
            
            return {'point_angle_diff_min':point_angle_diff_min,
            'point_angle_diff_max': point_angle_diff_max, 'angles': angles, 
            'Node1': [point1, point1Deforms], 'Node2': [point2, point2Deforms], 
            'Node3': [point3, point1Deforms]}
            
        
        def append_centerlines(allcenterlines):
            """ Merge seperated PointSet centerlines into one PointSet
            """
            # cl_merged = allcenterlines[0]
            cl_merged = PointSet(3)
            for i in range(0,len(allcenterlines)):
                for point in allcenterlines[i]:
                    cl_merged.append(point)
            return cl_merged
            
            
        def get_index_name():
                # Gui for input name
                app = QtGui.QApplication([])
                m = MyDialog()
                m.show()
                m.exec_()
                dialog_output = m.edit.text()
                return dialog_output  
            
       
        def storeOutputToExcel(storeOutput, exceldir):
            """Create file and add a worksheet or overwrite existing
            """
            # https://pypi.python.org/pypi/XlsxWriter
            workbook = xlsxwriter.Workbook(os.path.join(exceldir,'storeOutput.xlsx'))
            worksheet = workbook.add_worksheet('General')
            # set column width
            worksheet.set_column('A:A', 35)
            worksheet.set_column('B:B', 30)
            # add a bold format to highlight cells
            bold = workbook.add_format({'bold': True})
            # write title and general tab
            worksheet.write('A1', 'Output ChEVAS dynamic CT, 10 Phases', bold)
            analysisID = '%s_%s_%s' % (ptcode, ctcode, cropname)
            worksheet.write('A2', 'Filename:', bold)
            worksheet.write('B2', analysisID)
            worksheet.write('A3', 'Date and Time:', bold)
            date_time = datetime.now() #strftime("%d-%m-%Y %H:%M")
            date_format_str = 'dd-mm-yyyy hh:mm'
            date_format = workbook.add_format({'num_format': date_format_str,
                                      'align': 'left'})
            worksheet.write_datetime('B3', date_time, date_format)
            # write 'storeOutput'
            sort_index = []
            for i in range(len(storeOutput)):
                type = len(storeOutput[i]['NodesIndex'])
                sort_index.append([i, type])
            sort_index = np.array(sort_index)
            sort_index = sort_index[sort_index[:,1].argsort()]
            
            for i, n in sort_index:
                worksheet = workbook.add_worksheet(storeOutput[i]['Name'])
                worksheet.set_column('A:A', 35)
                worksheet.set_column('B:B', 20)
                worksheet.write('A1', 'Name:', bold)
                worksheet.write('B1', storeOutput[i]['Name'])
                if n == 1:
                    worksheet.write('A2', 'Type:', bold)
                    worksheet.write('B2', '1 Node')
                    
                    worksheet.write('A3', 'Minimum translation (mm, Phases)',bold)
                    worksheet.write('B3', storeOutput[i]['point_phase_min'][0])
                    worksheet.write_row('C3', list(storeOutput[i]['point_phase_min'][1]))
                    
                    worksheet.write('A4', 'Maximum translation (mm, Phases)',bold)
                    worksheet.write('B4', storeOutput[i]['point_phase_max'][0])
                    worksheet.write_row('C4', list(storeOutput[i]['point_phase_max'][1]))
                    
                    worksheet.write('A5', 'Avg node position and deformations', bold)
                    worksheet.write('B5', str(list(storeOutput[i]['Node1'][0])))
                    worksheet.write_row('C5', [str(x)for x in list(storeOutput[i]['Node1'][1])])
                    
                    worksheet.write('A6', 'Node Index Number', bold)
                    worksheet.write_row('B6', list(storeOutput[i]['NodesIndex'])) 
                                       
                elif n == 2:
                    worksheet.write('A2', 'Type:', bold)
                    worksheet.write('B2', '2 Nodes')
                    
                    worksheet.write('A3', 'Minimum distance (mm, Phases)',bold)
                    worksheet.write('B3', storeOutput[i]['point_to_pointMin'][0])
                    worksheet.write('C3', storeOutput[i]['point_to_pointMin'][1])
                    
                    worksheet.write('A4', 'Q1 distance (mm)',bold)
                    worksheet.write('B4', storeOutput[i]['point_to_pointQ1'])

                    worksheet.write('A5', 'Median distance (mm)',bold)
                    worksheet.write('B5', storeOutput[i]['point_to_pointMedian'])
                    
                    worksheet.write('A6', 'Q3 distance (mm)',bold)
                    worksheet.write('B6', storeOutput[i]['point_to_pointQ3'])
                    
                    worksheet.write('A7', 'Maximum distance (mm, phases)',bold)
                    worksheet.write('B7', storeOutput[i]['point_to_pointMax'][0])
                    worksheet.write('C7', storeOutput[i]['point_to_pointMax'][1])
                    
                    worksheet.write('A8', 'Maximum distance difference (mm)', bold)
                    worksheet.write('B8', storeOutput[i]['point_to_pointP'][0])
                    
                    worksheet.write('A9', 'Distances for each phase', bold)
                    worksheet.write_row('B9', [str(x) for x in list(storeOutput[i]['distances'])])
                    
                    worksheet.write('A10', 'Avg node1 position and deformations', bold)
                    worksheet.write('B10', str(list(storeOutput[i]['Node1'][0])))
                    worksheet.write_row('C10', [str(x) for x in list(storeOutput[i]['Node1'][1])])
                    
                    worksheet.write('A11', 'Avg node2 position and deformations', bold)
                    worksheet.write('B11', str(list(storeOutput[i]['Node2'][0])))
                    worksheet.write_row('C11', [str(x) for x in list(storeOutput[i]['Node2'][1])])
                    
                    worksheet.write('A12', 'Node Index Number', bold)
                    worksheet.write_row('B12', list(storeOutput[i]['NodesIndex'])) 
                    
                    worksheet.write('A13', 'Length centerline', bold) 
                    worksheet.write('B13', str(list(storeOutput[i]['dist_cl']))) 
                    
                    worksheet.write('A14', 'Minimum length centerline', bold) 
                    worksheet.write('B14', storeOutput[i]['cl_min']) 
                    worksheet.write('C14', storeOutput[i]['cl_min_index']) 
                    
                    worksheet.write('A15', 'Maximum length centerline', bold) 
                    worksheet.write('B15', storeOutput[i]['cl_max'])  
                    worksheet.write('C15', storeOutput[i]['cl_max_index']) 
                
                elif n == 3:
                    worksheet.write('A2', 'Type:', bold)
                    worksheet.write('B2', '3 Nodes')
                    
                    worksheet.write('A3', 'Minimum angle difference (degrees, Phases)',bold)
                    worksheet.write('B3', storeOutput[i]['point_angle_diff_min'][0])
                    worksheet.write_row('C3', list(storeOutput[i]['point_angle_diff_min'][1]))
                    
                    worksheet.write('A4', 'Maximum angle difference (degrees, Phases)',bold)
                    worksheet.write('B4', storeOutput[i]['point_angle_diff_max'][0])
                    worksheet.write_row('C4', list(storeOutput[i]['point_angle_diff_max'][1]))
                    
                    worksheet.write('A5', 'Angles for each phase (degrees)',bold)
                    worksheet.write_row('B5', list(storeOutput[i]['angles']))
                    
                    worksheet.write('A6', 'Avg node1 position and deformations', bold)
                    worksheet.write('B6', str(list(storeOutput[i]['Node1'][0])))
                    worksheet.write_row('C6', [str(x) for x in list(storeOutput[i]['Node1'][1])])
                    
                    worksheet.write('A7', 'Avg node2 position and deformations', bold)
                    worksheet.write('B7', str(list(storeOutput[i]['Node2'][0])))
                    worksheet.write_row('C7', [str(x) for x in list(storeOutput[i]['Node2'][1])])
                    
                    worksheet.write('A8', 'Avg node2 position and deformations', bold)
                    worksheet.write('B8', str(list(storeOutput[i]['Node3'][0])))
                    worksheet.write_row('C8', [str(x) for x in list(storeOutput[i]['Node3'][1])])
                    
                    worksheet.write('A9', 'Node Index Number', bold)
                    worksheet.write_row('B9', list(storeOutput[i]['NodesIndex']))   
                    
            workbook.close()
        
        # Bind event handlers
        fig.eventKeyDown.Bind(on_key)
        for node_point in node_points:
            node_point.eventDoubleClick.Bind(select_node)
            node_point.eventEnter.Bind(pick_node)
            node_point.eventLeave.Bind(unpick_node)
コード例 #45
0
    def DoScannning(self, event):
        """
		Perform scanning of different phase mask 
		"""
        # Create pseudonyms of necessary devices
        self.DevSpectrometer = self.parent.Spectrometer.dev
        self.DevPulseShaper = self.parent.PulseShaper.dev
        self.DevSampleSwitcher = self.parent.SampleSwitcher.dev

        # Save global settings and get the name of log file
        self.log_filename = SaveSettings(
            SettingsNotebook=self.parent,
            title="Select file to save phase mask scanning",
            filename="scanning_phase_mask.hdf5")
        if self.log_filename is None: return

        ####################### Initiate devices #############################

        # Initiate spectrometer
        settings = self.parent.Spectrometer.GetSettings()
        if self.DevSpectrometer.SetSettings(settings) == RETURN_FAIL: return

        # Initiate pulse shaper
        settings = self.parent.PulseShaper.GetSettings()
        if self.DevPulseShaper.Initialize(settings) == RETURN_FAIL: return

        # Get number of optimization variables
        self.num_pixels = self.DevPulseShaper.GetParamNumber()
        if self.num_pixels == RETURN_FAIL:
            raise RuntimeError(
                "Optimization cannot be started since calibration file was not loaded"
            )

        # Initiate sample switcher
        settings = self.parent.SampleSwitcher.GetSettings()
        if self.DevSampleSwitcher.Initialize(settings) == RETURN_FAIL: return

        # Saving the name of channels
        odd_settings = self.GetSettings()
        self.channels = sorted(eval("(%s,)" % odd_settings["channels"]))
        if self.DevSampleSwitcher.GetChannelNum() - 1 < max(self.channels):
            raise ValueError(
                "Error: Some channels specified are not accessible by sample switcher."
            )

        # Check whether the background signal array is present
        self.CheckBackground()

        #####################################################################

        # Get range of coefficient
        coeff_range = np.linspace(odd_settings["coeff_min"],
                                  odd_settings["coeff_max"],
                                  odd_settings["coeff_num"])

        # List all polynomial coefficients
        N = odd_settings["polynomial_order"]
        poly_coeffs = np.zeros((coeff_range.size * N, N + 1))
        for n in range(1, N + 1):
            poly_coeffs[(n - 1) * coeff_range.size:n * coeff_range.size,
                        n] = coeff_range

        # Chose max amplitude
        max_ampl = odd_settings["max_ampl"] * np.ones(self.num_pixels)

        # Arguments of the basis
        X = np.linspace(-1., 1., self.num_pixels)

        # Retrieve the basis type
        polynomial_basis = self.polynomial_bases[
            odd_settings["polynomial_basis"]]

        # Adjusting button's settings
        button = event.GetEventObject()
        button.SetLabel(button._stop_label)
        button.SetBackgroundColour('red')
        button.Bind(wx.EVT_BUTTON, button._stop_method)
        self.need_abort = False

        #####################################################################

        # Start scanning
        with h5py.File(self.log_filename, 'a') as log_file:
            for channel in self.channels:
                # Move to a selected channel
                self.DevSampleSwitcher.MoveToChannel(channel)

                # abort, if requested
                wx.Yield()
                if self.need_abort: break

                # Looping over pulse shapes
                for scan_num, coeff in enumerate(poly_coeffs):

                    # Calculate new phase
                    phase = polynomial_basis(coeff)(X)

                    # Set the pulse shape
                    self.DevPulseShaper.SetAmplPhase(max_ampl, phase)

                    # Save phase in radians
                    ampl, phase = self.DevPulseShaper.GetUnwrappedAmplPhase(
                        max_ampl, phase)
                    if scan_num == 0:
                        # Initialize the array
                        phases_rad = np.zeros((len(poly_coeffs), phase.size),
                                              dtype=phase.dtype)
                        amplitudes = np.zeros_like(phases_rad)
                        amplitudes[:] = ampl.min()

                    # Save phase
                    phases_rad[scan_num] = phase
                    amplitudes[scan_num] = ampl

                    # abort, if requested
                    wx.Yield()
                    if self.need_abort: break

                    # Get spectrum
                    spectrum = self.GetSampleSpectrum(channel)
                    # Vertical binning
                    spectrum = (spectrum.sum(
                        axis=0) if len(spectrum.shape) == 2 else spectrum)

                    if scan_num == 0:
                        # Initialize the array
                        spectra = np.zeros((len(poly_coeffs), spectrum.size),
                                           dtype=spectrum.dtype)
                        spectra[:] = spectrum.min()

                    # Save the spectrum
                    spectra[scan_num] = spectrum

                    # Display the currently acquired data
                    try:
                        spectra_2d_img.SetData(spectra)
                        phases_rad_2d_img.SetData(phases_rad % (2 * np.pi))
                        #amplitudes_2d_img.SetData( amplitudes )
                    except NameError:
                        visvis.cla()
                        visvis.clf()

                        visvis.subplot(121)
                        spectra_2d_img = visvis.imshow(spectra,
                                                       cm=visvis.CM_JET)
                        visvis.ylabel('scans')
                        visvis.xlabel('wavelegth')
                        visvis.title("spectral scan")

                        visvis.subplot(122)
                        phases_rad_2d_img = visvis.imshow(phases_rad %
                                                          (2 * np.pi),
                                                          cm=visvis.CM_JET)
                        visvis.title("phase shapes")

                        #visvis.subplot(133)
                        #amplitudes_2d_img = visvis.imshow(amplitudes, cm=visvis.CM_JET)
                        #visvis.title("amplitudes")

                # Save the data for the given channel
                try:
                    del log_file[str(channel)]
                except KeyError:
                    pass

                channel_grp = log_file.create_group(str(channel))
                channel_grp["spectra"] = spectra
                channel_grp["phases_rad"] = phases_rad
                channel_grp["amplitudes"] = amplitudes
                channel_grp["poly_coeffs"] = poly_coeffs

        # Readjust buttons settings
        self.StopScannning(event)
コード例 #46
0
#!/usr/bin/env python
import visvis as vv
from visvis import Aarray
app = vv.use()

# Let's say we have lena, but only the even pixels in the y dimension.
# So each pixel should have twice the size in the y direction.
im = vv.imread('astronaut.png')
im = im[::2, :, :]

# Init a figure with two axes
vv.figure()
a1 = vv.subplot(121)
vv.title('pixel units')
a2 = vv.subplot(122)
vv.title('real-world units')

# Method 1: scale the whole scene
# Use this if you want the axis to depict pixel units.
t1 = vv.imshow(im, axes=a1)
a1.daspect = 1, -2  # daspect works x,y,z, the y-axis is flipped for images

# Method 2: use the Aarray class to scale the image
# You could use this is you know the physical dimensions of a pixel,
# to have the axis depict, for example, mm.
im2 = Aarray(im, (2, 1, 1))  # sampling is given in y,x,color order
t2 = vv.imshow(im2, axes=a2)

app.Run()
コード例 #47
0
    def __init__(self,
                 ptcode,
                 ctcode,
                 StartPoints,
                 EndPoints,
                 basedir,
                 modelname='modelavgreg'):
        """ with start and endpoints provided, calculate centerline and save as
        ssdf in basedir as model and dynamic model
        """
        #todo: name of dynamic model is now deforms, unclear, should be dynamic
        #import numpy as np
        import visvis as vv
        import numpy as np
        import os
        import copy

        from stentseg.utils import PointSet, _utils_GUI
        from stentseg.utils.centerline import (find_centerline,
                                               points_from_nodes_in_graph,
                                               points_from_mesh,
                                               smooth_centerline)
        from stentseg.utils.datahandling import loadmodel, loadvol
        from stentseg.utils.visualization import show_ctvolume
        from stentseg.utils.picker import pick3d

        stentnr = len(StartPoints)

        cropname = 'prox'
        what = modelname
        what_vol = 'avgreg'
        vismids = True
        m = loadmodel(basedir, ptcode, ctcode, cropname, what)
        s = loadvol(basedir, ptcode, ctcode, cropname, what_vol)
        s.vol.sampling = [s.sampling[1], s.sampling[1], s.sampling[2]]
        s.sampling = s.vol.sampling

        start1 = StartPoints.copy()
        ends = EndPoints.copy()

        from stentseg.stentdirect import stentgraph
        ppp = points_from_nodes_in_graph(m.model)

        allcenterlines = []  # for pp
        allcenterlines_nosmooth = []  # for pp
        centerlines = []  # for stentgraph
        nodes_total = stentgraph.StentGraph()
        for j in range(stentnr):
            if j == 0 or not start1[j] == ends[j - 1]:
                # if first stent or when stent did not continue with this start point
                nodes = stentgraph.StentGraph()
                centerline = PointSet(3)  # empty

            # Find main centerline
            # if j > 3: # for stent with midpoints
            #     centerline1 = find_centerline(ppp, start1[j], ends[j], step= 1,
            #     ndist=10, regfactor=0.5, regsteps=10, verbose=False)

            #else:
            centerline1 = find_centerline(ppp,
                                          start1[j],
                                          ends[j],
                                          step=1,
                                          ndist=10,
                                          regfactor=0.5,
                                          regsteps=1,
                                          verbose=False)
            # centerline1 is a PointSet

            print('Centerline calculation completed')

            # ========= Maaike =======
            smoothfactor = 15  # Mirthe used 2 or 4

            # check if cll continued here from last end point
            if not j == 0 and start1[j] == ends[j - 1]:
                # yes we continued
                ppart = centerline1[:
                                    -1]  # cut last but do not cut first point as this is midpoint
            else:
                # do not use first points, as they are influenced by user selected points
                ppart = centerline1[1:-1]

            for p in ppart:
                centerline.append(p)

            # if last stent or stent does not continue with next start-endpoint
            if j == stentnr - 1 or not ends[j] == start1[j + 1]:
                # store non-smoothed for vis
                allcenterlines_nosmooth.append(centerline)
                pp = smooth_centerline(centerline, n=smoothfactor)
                # add pp to list
                allcenterlines.append(pp)  # list with PointSet per centerline
                self.allcenterlines = allcenterlines

                # add pp as nodes
                for i, p in enumerate(pp):
                    p_as_tuple = tuple(p.flat)
                    nodes.add_node(p_as_tuple)
                    nodes_total.add_node(p_as_tuple)
                # add pp as one edge so that pathpoints are in fixed order
                pstart = tuple(pp[0].flat)
                pend = tuple(pp[-1].flat)
                nodes.add_edge(pstart, pend, path=pp)
                nodes_total.add_edge(pstart, pend, path=pp)
                # add final centerline nodes model to list
                centerlines.append(nodes)

            # ========= Maaike =======

        ## Store segmentation to disk

        # Build struct
        s2 = vv.ssdf.new()
        s2.sampling = s.sampling
        s2.origin = s.origin
        s2.stenttype = m.stenttype
        s2.croprange = m.croprange
        for key in dir(m):
            if key.startswith('meta'):
                suffix = key[4:]
                s2['meta' + suffix] = m['meta' + suffix]
        s2.what = what
        s2.params = s.params  #reg
        s2.paramsseeds = m.params
        s2.stentType = 'nellix'
        s2.StartPoints = StartPoints
        s2.EndPoints = EndPoints
        # keep centerlines as pp also [Maaike]
        s2.ppallCenterlines = allcenterlines
        for k in range(len(allcenterlines)):
            suffix = str(k)
            pp = allcenterlines[k]
            s2['ppCenterline' + suffix] = pp

        s3 = copy.deepcopy(s2)
        s3['model'] = nodes_total.pack()

        # Store model for each centerline
        for j in range(len(centerlines)):
            suffix = str(j)
            model = centerlines[j]
            s2['model' + suffix] = model.pack()

        # Save model with seperate centerlines.
        filename = '%s_%s_%s_%s.ssdf' % (ptcode, ctcode, cropname,
                                         'centerline_' + what)
        vv.ssdf.save(os.path.join(basedir, ptcode, filename), s2)
        print('saved to disk as {}.'.format(filename))

        # Save model with combined centerlines
        filename = '%s_%s_%s_%s.ssdf' % (ptcode, ctcode, cropname,
                                         'centerline_total_' + what)
        vv.ssdf.save(os.path.join(basedir, ptcode, filename), s3)
        print('saved to disk as {}.'.format(filename))

        # remove intermediate centerline points
        # start1 = map(tuple, start1)
        # ends = map(tuple, ends)
        startpoints_clean = copy.deepcopy(start1)
        endpoints_clean = copy.deepcopy(ends)
        duplicates = list(set(start1) & set(ends))
        for i in range(len(duplicates)):
            startpoints_clean.remove(duplicates[i])
            endpoints_clean.remove(duplicates[i])

        #Visualize
        f = vv.figure(10)
        vv.clf()
        a1 = vv.subplot(121)
        a1.daspect = 1, 1, -1

        vv.plot(ppp, ms='.', ls='', alpha=0.6, mw=2)
        for j in range(len(startpoints_clean)):
            vv.plot(PointSet(list(startpoints_clean[j])),
                    ms='.',
                    ls='',
                    mc='g',
                    mw=20)  # startpoint green
            vv.plot(PointSet(list(endpoints_clean[j])),
                    ms='.',
                    ls='',
                    mc='r',
                    mw=20)  # endpoint red
        for j in range(len(allcenterlines)):
            vv.plot(allcenterlines[j], ms='.', ls='', mw=10, mc='y')
        vv.title('Centerlines and seed points')
        vv.xlabel('x (mm)')
        vv.ylabel('y (mm)')
        vv.zlabel('z (mm)')
        # for j in range(len(allcenterlines_nosmooth)):
        #     vv.plot(allcenterlines_nosmooth[j], ms='o', ls='', mw=10, mc='c', alpha=0.6)

        a2 = vv.subplot(122)
        a2.daspect = 1, 1, -1

        vv.plot(ppp, ms='.', ls='', alpha=0.6, mw=2)
        # vv.volshow(s.vol, clim=clim, renderStyle = 'mip')
        t = show_ctvolume(s.vol,
                          axis=a2,
                          showVol='ISO',
                          clim=(0, 2500),
                          isoTh=250,
                          removeStent=False,
                          climEditor=True)
        label = pick3d(vv.gca(), s.vol)
        for j in range(len(startpoints_clean)):
            vv.plot(PointSet(list(startpoints_clean[j])),
                    ms='.',
                    ls='',
                    mc='g',
                    mw=20,
                    alpha=0.6)  # startpoint green
            vv.plot(PointSet(list(endpoints_clean[j])),
                    ms='.',
                    ls='',
                    mc='r',
                    mw=20,
                    alpha=0.6)  # endpoint red
        for j in range(len(allcenterlines)):
            vv.plot(allcenterlines[j], ms='o', ls='', mw=10, mc='y', alpha=0.6)

        # show midpoints (e.g. duplicates)
        if vismids:
            for p in duplicates:
                vv.plot(p[0], p[1], p[2], mc='m', ms='o', mw=10, alpha=0.6)

        a2.axis.visible = False

        vv.title('Centerlines and seed points')

        a1.camera = a2.camera

        f.eventKeyDown.Bind(
            lambda event: _utils_GUI.RotateView(event, [a1, a2]))
        f.eventKeyDown.Bind(
            lambda event: _utils_GUI.ViewPresets(event, [a1, a2]))

        # Pick node for midpoint to redo get_centerline
        self.pickedCLLpoint = _utils_GUI.Event_pick_graph_point(
            nodes_total, s.vol, label, nodesOnly=True)  # x,y,z
        # use key p to select point

        #===============================================================================
        vv.figure(11)
        vv.gca().daspect = 1, 1, -1
        t = show_ctvolume(s.vol,
                          showVol='ISO',
                          clim=(0, 2500),
                          isoTh=250,
                          removeStent=False,
                          climEditor=True)
        label2 = pick3d(vv.gca(), s.vol)
        for j in range(len(startpoints_clean)):
            vv.plot(PointSet(list(startpoints_clean[j])),
                    ms='.',
                    ls='',
                    mc='g',
                    mw=20,
                    alpha=0.6)  # startpoint green
            vv.plot(PointSet(list(endpoints_clean[j])),
                    ms='.',
                    ls='',
                    mc='r',
                    mw=20,
                    alpha=0.6)  # endpoint red
        vv.xlabel('x (mm)')
        vv.ylabel('y (mm)')
        vv.zlabel('z (mm)')
        #===============================================================================

        ## Make model dynamic (and store/overwrite to disk)
        import pirt
        from stentseg.motion.dynamic import incorporate_motion_nodes, incorporate_motion_edges

        # Load deforms
        filename = '%s_%s_%s_%s.ssdf' % (ptcode, ctcode, cropname, 'deforms')
        s1 = vv.ssdf.load(os.path.join(basedir, ptcode, filename))
        deformkeys = []
        for key in dir(s1):
            if key.startswith('deform'):
                deformkeys.append(key)
        deforms = [s1[key] for key in deformkeys]
        deforms = [
            pirt.DeformationFieldBackward(*fields) for fields in deforms
        ]
        for i in range(len(deforms)):
            deforms[i]._field_sampling = tuple(s1.sampling)
        paramsreg = s1.params

        # Load model
        s2 = loadmodel(basedir, ptcode, ctcode, cropname, 'centerline_' + what)
        s3 = loadmodel(basedir, ptcode, ctcode, cropname,
                       'centerline_total_' + what)

        # Combine ...
        for key in dir(s2):
            if key.startswith('model'):
                incorporate_motion_nodes(s2[key], deforms, s.origin)
                incorporate_motion_edges(s2[key], deforms, s.origin)
                model = s2[key]
                s2[key] = model.pack()
        # Combine ...
        for key in dir(s3):
            if key.startswith('model'):
                incorporate_motion_nodes(s3[key], deforms, s.origin)
                incorporate_motion_edges(s3[key], deforms, s.origin)
                model = s3[key]
                s3[key] = model.pack()

        # Save
        s2.paramsreg = paramsreg
        filename = '%s_%s_%s_%s.ssdf' % (ptcode, ctcode, cropname,
                                         'centerline_' + what + '_deforms')
        vv.ssdf.save(os.path.join(basedir, ptcode, filename), s2)
        print('saved to disk as {}.'.format(filename))

        # Save
        s3.paramsreg = paramsreg
        filename = '%s_%s_%s_%s.ssdf' % (
            ptcode, ctcode, cropname, 'centerline_total_' + what + '_deforms')
        vv.ssdf.save(os.path.join(basedir, ptcode, filename), s3)
        print('saved to disk as {}.'.format(filename))
コード例 #48
0
ファイル: nellix2ssdf.py プロジェクト: almarklein/stentseg
    def __init__(self, dicom_basedir, ptcode, ctcode, basedir):

        import imageio
        #import easygui

        from stentseg.utils.datahandling import loadvol
        from stentseg.utils.datahandling import savecropvols, saveaveraged

        ## Select base directory for LOADING DICOM data

        #dicom_basedir = easygui.diropenbox()
        print('DICOM Path = ', dicom_basedir)

        #ctcode = '12months'  # 'pre', 'post_x', '12months'
        stenttype = 'nellix'

        ## Select base directory to SAVE SSDF
        #basedir = easygui.diropenbox()
        print('Base Path = ', basedir)

        # Set which crops to save
        cropnames = ['prox']  #,'stent'] # ['ring'] or ['ring','stent'] or ..

        #===============================================================================
        ## Step A: read single volumes to get vols:
        #  folder1 = '10%'
        #  folder2 = '60%'
        #  vol1 = imageio.volread(os.path.join(dicom_basedir, folder1), 'dicom')
        #  vol2 = imageio.volread(os.path.join(dicom_basedir, folder2), 'dicom')
        #  print(  )
        #
        #  if vol1.meta.SeriesDescription[:2] < vol2.meta.SeriesDescription[:2]:
        #      vols4078 = [vol1,vol2]
        #  else:
        #      vols4078 = [vol2,vol1]
        #
        #  vols = vols4078.copy()
        #
        #  for vol in vols:
        #      vol.meta.PatientName = ptcode # anonimyze
        #      vol.meta.PatientID = 'anonymous'
        #     print(vol.meta.SeriesDescription,'-', vol.meta.sampling)
        #===============================================================================

        ##Orginele code
        #===============================================================================
        #
        # folder1 = '40% iDose'
        # folder2 = '78 iDose'
        # vol1 = imageio.volread(os.path.join(dicom_basedir, folder1), 'dicom')
        # vol2 = imageio.volread(os.path.join(dicom_basedir, folder2), 'dicom')
        # print(  )
        #
        # if vol1.meta.SeriesDescription[:2] < vol2.meta.SeriesDescription[:2]:
        #     vols4078 = [vol1,vol2]
        # else:
        #     vols4078 = [vol2,vol1]
        #
        # vols = vols4078.copy()
        #
        # for vol in vols:
        #     vol.meta.PatientName = ptcode # anonimyze
        #     vol.meta.PatientID = 'anonymous'
        #     print(vol.meta.SeriesDescription,'-', vol.meta.sampling)
        #===============================================================================

        ## Step A: read 10 volumes to get vols
        # Deze zoekt alle mappen en dat zijn er dus 10 maar niet in de goede volgorde
        vols2 = [
            vol2 for vol2 in imageio.get_reader(dicom_basedir, 'DICOM', 'V')
        ]

        vols = [None] * len(vols2)
        for i, vol in enumerate(vols2):
            #    print(vol.meta.sampling)
            print(vol.meta.SeriesDescription)
            phase = int(vol.meta.SeriesDescription[:1])
            # use phase to fix order of phases
            vols[phase] = vol
            #vols[phase].meta.ImagePositionPatient = (0.0,0.0,0.0)

        for i, vol in enumerate(
                vols):  #wat ik heb veranderd is i, en enumerate()
            print(vol.meta.SeriesDescription)
            assert vol.shape == vols[0].shape
            assert str(i * 10) in vol.meta.SeriesDescription  # 0% , 10% etc.

        ## Step B: Crop and Save SSDF
        # 1 of 2 cropnames opgeven voor opslaan 1 of 2 crpos.
        # Het eerste volume wordt geladen in MIP, crop met marges van minimaal 30 mm
        for cropname in cropnames:
            savecropvols(vols, basedir, ptcode, ctcode, cropname, stenttype)
        #    saveaveraged(basedir, ptcode, ctcode, cropname, range(0,100,10))

        ## Visualize result

        #s1 = loadvol(basedir, ptcode, ctcode, cropnames[0], what ='10avgreg')
        #s2 = loadvol(basedir, ptcode, ctcode, cropnames[0], what ='10phases')
        s1 = loadvol(basedir, ptcode, ctcode, cropnames[0], what='phases')
        #s2 = loadvol(basedir, ptcode, ctcode, cropnames[0], what = 'avg010')
        #vol1 = s1.vol
        vol1 = s1.vol40

        # Visualize and compare
        colormap = {
            'r': [(0.0, 0.0), (0.17727272, 1.0)],
            'g': [(0.0, 0.0), (0.27272728, 1.0)],
            'b': [(0.0, 0.0), (0.34545454, 1.0)],
            'a': [(0.0, 1.0), (1.0, 1.0)]
        }

        import visvis as vv

        fig = vv.figure(1)
        vv.clf()
        fig.position = 0, 22, 1366, 706
        a1 = vv.subplot(111)
        a1.daspect = 1, 1, -1
        # t1 = vv.volshow(vol1, clim=(0, 3000), renderStyle='iso') # iso or mip
        # t1.isoThreshold = 600 # stond op 400 maar je moet hoger zetten als je alleen stent wil
        # t1.colormap = colormap
        a1 = vv.volshow2(vol1, clim=(-500, 1500), renderStyle='mip')
        vv.xlabel('x'), vv.ylabel('y'), vv.zlabel('z')
        # vv.title('One volume at %i procent of cardiac cycle' % phase )
        vv.title('Vol40')
コード例 #49
0
ファイル: plotting.py プロジェクト: AlexAppleManzer/AIAssign1
#!/usr/bin/env python

import visvis as vv
app = vv.use()

f = vv.clf()
a = vv.cla()


vv.plot([12,34,21,38], lc='b', ls=':',mc='b', mw=7, lw=2, ms='s', mec='r')
vv.plot([1,3,4],[33,47,12], lc='r', mc='r', ms='.')
vv.plot([20,24,45,21], lc='g', ls='--', mc='g', mw=12, lw=3, ms='')
vv.plot([35,14,40,31], lc='k', ls='-.', mc='g', mw=12, lw=3, ms='*')
# If the star is not visible, your OpenGl system does not support point sprites

a = vv.gca()
a.legend = 'line 1', 'line 2', 'line 3'
a.axis.showGrid = 1

a.axis.xlabel = 'measurement number'
a.axis.ylabel = 'some quantity [unit]'
vv.title('An example of \b{plotting}')

app.Run()
コード例 #50
0
app = vv.use()

# Load volume
vol = vv.volread("stent")

# Create figure and make subplots with different renderers
vv.figure(1)
vv.clf()
RS = ["mip", "iso", "edgeray", "ray", "litray"]
a0 = None
tt = []
for i in range(5):
    a = vv.subplot(3, 2, i + 2)
    t = vv.volshow(vol)
    vv.title("Renderstyle " + RS[i])
    t.colormap = vv.CM_HOT
    t.renderStyle = RS[i]
    t.isoThreshold = 200  # Only used in iso render style
    tt.append(t)
    if a0 is None:
        a0 = a
    else:
        a.camera = a0.camera

# Create colormap editor in first axes
cme = vv.ColormapEditor(vv.gcf(), *tt[3:])

# Run app
app.Create()
app.Run()
コード例 #51
0
ファイル: ControlVisVis.py プロジェクト: HossamBalaha/pyforms
 def title(self, value):
     vv.title(value)
コード例 #52
0
 def title(self, value):
     vv.title(value)
コード例 #53
0
 def __open(self, dirname, filename):
     _info, spectrum, _locs = open_plot(dirname, filename)
     self.directory = dirname
     self.__plot(sort_spectrum(spectrum))
     vv.title(filename)
コード例 #54
0
ファイル: plot_preview.py プロジェクト: 0x7678/RTLSDR-Scanner
 def set_title(self, title):
     vv.title(title.replace('\n', ' '))
コード例 #55
0
    def GetDeltaScan(self, event):
        """
		Measure spectra by varying parameter delta in reference phase mask
		"""
        # Create pseudonyms of necessary devices
        self.DevSpectrometer = self.parent.Spectrometer.dev
        self.DevPulseShaper = self.parent.PulseShaper.dev

        ####################### Initiate devices #############################

        # Initiate spectrometer
        settings = self.parent.Spectrometer.GetSettings()
        if self.DevSpectrometer.SetSettings(settings) == RETURN_FAIL: return

        # Initiate pulse shaper
        settings = self.parent.PulseShaper.GetSettings()
        if self.DevPulseShaper.Initialize(settings) == RETURN_FAIL: return

        # Get number of optimization variables
        self.num_pixels = self.DevPulseShaper.GetParamNumber()
        if self.num_pixels == RETURN_FAIL:
            raise RuntimeError(
                "Optimization cannot be started since calibration file was not loaded"
            )

        miips_settings = self.GetSettings()
        #####################################################################

        # Get range of coefficient
        coeff_range = np.linspace(miips_settings["coeff_min"],
                                  miips_settings["coeff_max"],
                                  miips_settings["coeff_num"])

        # Get reference phase based on the corrections already obtained
        reference_phase, X, polynomial_basis = self.GetReferencePhase(
            miips_settings)

        # Get new polynomial
        new_coeffs = np.zeros(miips_settings["polynomial_order"] + 1)
        new_coeffs[-1] = 1
        current_polynomial = polynomial_basis(new_coeffs)(X)

        # Chose max amplitude
        max_ampl = miips_settings["max_ampl"] * np.ones(self.num_pixels)

        # Adjusting button's settings
        button = event.GetEventObject()
        button.SetLabel(button._stop_label)
        button.SetBackgroundColour('red')
        button.Bind(wx.EVT_BUTTON, button._stop_method)
        self.need_abort = False

        for scan_num, coeff in enumerate(coeff_range):
            # Get current phase mask
            current_phase = coeff * current_polynomial
            current_phase += reference_phase

            # Check for consistency
            current_phase %= 1

            # Set the pulse shape
            self.DevPulseShaper.SetAmplPhase(max_ampl, current_phase)

            wx.Yield()
            # abort, if requested
            if self.need_abort: break

            # Get spectrum
            spectrum = self.DevSpectrometer.AcquiredData()

            # Vertical binning
            spectrum = (spectrum.sum(
                axis=0) if len(spectrum.shape) == 2 else spectrum)

            try:
                spectral_scans
            except NameError:
                # Allocate space for spectral scans
                spectral_scans = np.zeros((coeff_range.size, spectrum.size),
                                          dtype=spectrum.dtype)

            # Save spectrum
            spectral_scans[scan_num] = spectrum

            # Display the currently acquired data
            try:
                spectral_scan_2d_img.SetData(spectral_scans)
            except NameError:
                visvis.cla()
                visvis.clf()
                spectral_scan_2d_img = visvis.imshow(spectral_scans,
                                                     cm=visvis.CM_JET)
                visvis.ylabel('coefficeints')
                visvis.xlabel('wavelegth')

        #######################################################

        # Get current wavelength
        wavelength = self.DevSpectrometer.GetWavelengths()

        # Adding the scan to log
        self.scan_log.append({
            "spectral_scans": spectral_scans,
            "reference_phase": reference_phase,
            "current_polynomial": current_polynomial,
            "coeff_range": coeff_range,
            "wavelength": wavelength
        })

        # Plotting fit
        visvis.cla()
        visvis.clf()

        ################ Find the value of coeff such that it maximizes the total intensity of SHG

        # Method 1: use polynomial filter

        # Ignored not scanned parameter
        spectral_sum = spectral_scans.sum(axis=1)
        indx = np.nonzero(spectral_sum > 0)
        # Fit the total spectral intensity with chosen polynomials
        spectral_sum_fit = polynomial_basis.fit(coeff_range[indx],
                                                spectral_sum[indx], 10)
        # Find extrema of the polynomial fit
        opt_coeff = spectral_sum_fit.deriv().roots()
        # Find maximum
        fit_max_sum_val = opt_coeff[np.argmax(
            spectral_sum_fit(opt_coeff))].real
        print "\n\nOptimal value of the coefficient (using the polynomial fit) is ", fit_max_sum_val

        # Method 2: Use Gaussian filter
        # Smoothing spectral scans
        filtered_spectral_scans = gaussian_filter(spectral_scans, (2, 0.5))
        gauss_max_sum_val = coeff_range[np.argmax(
            filtered_spectral_scans.sum(axis=1))]
        print "\nOptimal value of the coefficient (using the Gaussian filter) is ", gauss_max_sum_val

        # If the difference between methods is great then use the Gaussian filter
        if abs(gauss_max_sum_val - fit_max_sum_val) / np.abs(
            [gauss_max_sum_val, fit_max_sum_val]).max() > 0.3:
            max_sum_val = gauss_max_sum_val
        else:
            max_sum_val = fit_max_sum_val

        self.current_coeff_val.SetValue(max_sum_val)
        filtered_spectral_scans[np.searchsorted(
            coeff_range, max_sum_val)][0:-1:2] = spectral_scans.min()

        ################ Plotting results ####################
        #spectral_scan_2d_img.SetData(spectral_scans)
        #spectral_scan_2d_img.SetClim( spectral_scans.min(), spectral_scans.max() )

        visvis.subplot(121)
        visvis.title("Raw spectral scans")
        visvis.imshow(spectral_scans, cm=visvis.CM_JET)
        visvis.ylabel('coefficeints')
        visvis.xlabel('wavelegth')

        visvis.subplot(122)
        visvis.title("Finding maximum")
        visvis.imshow(filtered_spectral_scans, cm=visvis.CM_JET)
        visvis.ylabel('coefficeints')
        visvis.xlabel('wavelegth')

        # Readjust buttons settings
        self.StopScannning(event)
コード例 #56
0
ファイル: dicom2ssdf.py プロジェクト: almarklein/stentseg
def dicom2ssdf(dicom_basedir,
               ptcode,
               ctcode,
               basedir,
               cropnames=['stent'],
               savedistolicavg=False,
               visvol=True,
               visdynamic=False):
    """ read dicom volumes and store as ssdf format
    """
    #Step A
    vols2 = [vol2 for vol2 in imageio.get_reader(dicom_basedir, 'DICOM', 'V')]
    try:
        for i, vol in enumerate(vols2):
            print(vol.meta.ImagePositionPatient)
        for i, vol in enumerate(vols2):
            print(vol.shape)
        for i, vol in enumerate(vols2):
            print(vol.meta.AcquisitionTime)
            print(vol.meta.sampling)
            assert vol.shape == vols2[0].shape
            assert vol.meta.SeriesTime == vols2[0].meta.SeriesTime
    except AttributeError:
        print('Some meta information is not available')
        pass

    # check order of phases
    vols = vols2.copy()
    try:
        for i, vol in enumerate(vols):
            print(vol.meta.SeriesDescription)
            assert str(i * 10) in vol.meta.SeriesDescription  # 0% , 10% etc.
    except AttributeError:  # meta info is missing
        print('vol.meta.SeriesDescription meta information is not available')
        pass
    except AssertionError:  # not correct order, fix
        vols = [None] * len(vols2)
        for i, vol in enumerate(vols2):
            print(vol.meta.SeriesDescription)
            phase = int(vol.meta.SeriesDescription[:1])
            # use phase to fix order of phases
            vols[phase] = vol

    # Step B: Crop and Save SSDF
    # Load and show first volume: crop with a margin of at least ~25 mm
    print()
    print('Crop with margins ~25 mm around ROI for the registration algorithm')
    stenttype = None  # deprecate, not needed
    for cropname in cropnames:
        savecropvols(vols, basedir, ptcode, ctcode, cropname, stenttype)
        # Step C: average diastolic phases
        if savedistolicavg:
            phases = 50, 10  # use 7 phases from 50% to 10%
            saveaveraged(basedir, ptcode, ctcode, cropname, phases)

    # Visualize 1 phase
    import visvis as vv
    if visvol:
        vol1 = vols[1]
        colormap = {
            'r': [(0.0, 0.0), (0.17727272, 1.0)],
            'g': [(0.0, 0.0), (0.27272728, 1.0)],
            'b': [(0.0, 0.0), (0.34545454, 1.0)],
            'a': [(0.0, 1.0), (1.0, 1.0)]
        }

        fig = vv.figure(2)
        vv.clf()
        fig.position = 0, 22, 1366, 706
        a1 = vv.subplot(111)
        a1.daspect = 1, 1, -1
        renderStyle = 'mip'
        t1 = vv.volshow(vol1, clim=(0, 3000),
                        renderStyle=renderStyle)  # iso or mip
        if renderStyle == 'iso':
            t1.isoThreshold = 300
            t1.colormap = colormap
        a1 = vv.volshow2(vol1, clim=(-500, 500), renderStyle=renderStyle)
        vv.xlabel('x'), vv.ylabel('y'), vv.zlabel('z')
        vv.title('One volume at 10\% procent of cardiac cycle')

    if visdynamic:
        from lspeas.utils.vis import showVolPhases
        showVol = 'mip'
        t = showVolPhases(basedir,
                          vols2,
                          showVol=showVol,
                          mipIsocolor=True,
                          isoTh=310,
                          clim=(60, 3000),
                          slider=True)

    return vols
コード例 #57
0
    grid1 = fromField(im[:, :, 0], spacing)
    grid2 = fromField(im[:, :, 1], spacing)
    grid3 = fromField(im[:, :, 2], spacing)

    # Obtain interpolated image
    imi = np.zeros_like(im)
    imi[:, :, 0] = grid1.get_field()
    imi[:, :, 1] = grid2.get_field()
    imi[:, :, 2] = grid3.get_field()

    ims.append(imi)
    imsd.append(abs(imi - im))

diff = abs(ims[0] - ims[1])

# Show
vv.figure(1)
vv.clf()
#vv.subplot(221); vv.imshow(im)
for i in range(2):
    vv.subplot(2, 2, i + 1)
    vv.imshow(ims[i])
    vv.title('Multiscale' if i == 0 else 'Single scale')
    vv.subplot(2, 2, i + 3)
    vv.imshow(imsd[i])

for i in range(4):
    a = vv.subplot(2, 2, i + 1)
    t = a.FindObjects(vv.Texture2D)
    t[0].SetClim(0, 255)