def value(self, value): a = vv.gca() view = a.GetView() a.Clear() vv.volshow3(value, renderStyle='mip') if not self._first: a = vv.gca() a.SetView(view) self._first=False
def refresh(self): if len(self._value)>1: a = vv.gca() view = a.GetView() a.Clear() vv.volshow3(self._value, renderStyle='mip', cm=self._colorMap ) if not self._first: a = vv.gca() a.SetView(view) self._first=False
def refresh(self): if len(self._value)>1: vv.figure(self._fig.nr) a = vv.gca() view = a.GetView() a.Clear() vv.volshow3(self._value, renderStyle='mip', cm=self._colorMap, clim=self._colors_limits ) if not self._first: a = vv.gca() a.SetView(view) self._first=False
def refresh(self): if len(self._value) > 1: vv.figure(self._fig.nr) a = vv.gca() view = a.GetView() a.Clear() vv.volshow3(self._value, renderStyle='mip', cm=self._colorMap) if not self._first: a = vv.gca() a.SetView(view) self._first = False
def volshow(*args, **kwargs): """ volshow(vol, clim=None, cm=CM_GRAY, axesAdjust=True, axes=None) Display a 3D image (a volume). This is a convenience function that calls either volshow3() or volshow2(). If the current system supports it (OpenGL version >= 2.0), displays a 3D rendering (volshow3). Otherwise shows three slices that can be moved interactively (volshow2). Parameters ---------- vol : numpy array The 3D image to visualize. Can be grayscale, RGB, or RGBA. If the volume is an anisotropic array (vv.Aaray), the appropriate scale and translate transformations are applied. clim : 2-element tuple The color limits to scale the intensities of the image. If not given, the im.min() and im.max() are used (neglecting nan and inf). cm : Colormap Set the colormap to apply in case the volume is grayscale. axesAdjust : bool If axesAdjust==True, this function will call axes.SetLimits(), and set the camera type to 3D. If daspectAuto has not been set yet, it is set to False. axes : Axes instance Display the image in this axes, or the current axes if not given. Any other keyword arguments are passed to either volshow2() or volshow3(). """ # Make sure that a figure exists vv.gcf() # Test and run if vv.settings.volshowPreference == 3 and vv.misc.getOpenGlCapable(2.0): return vv.volshow3(*args, **kwargs) else: return vv.volshow2(*args, **kwargs)
def volshow(*args, **kwargs): """ volshow(vol, clim=None, cm=CM_GRAY, axesAdjust=True, axes=None) Display a 3D image (a volume). This is a convenience function that calls either volshow3() or volshow2(). If the current system supports it (OpenGL version >= 2.0), displays a 3D rendering (volshow3). Otherwise shows three slices that can be moved interactively (volshow2). Parameters ---------- vol : numpy array The 3D image to visualize. Can be grayscale, RGB, or RGBA. If the volume is an anisotropic array (vv.Aaray), the appropriate scale and translate transformations are applied. clim : 2-element tuple The color limits to scale the intensities of the image. If not given, the im.min() and im.max() are used (neglecting nan and inf). cm : Colormap Set the colormap to apply in case the volume is grayscale. axesAdjust : bool If axesAdjust==True, this function will call axes.SetLimits(), and set the camera type to 3D. If daspectAuto has not been set yet, it is set to False. axes : Axes instance Display the image in this axes, or the current axes if not given. Any other keyword arguments are passed to either volshow2() or volshow3(). """ # Make sure that a figure exists vv.gcf() # Test and run if vv.settings.volshowPreference==3 and vv.misc.getOpenGlCapable(2.0): return vv.volshow3(*args, **kwargs) else: return vv.volshow2(*args, **kwargs)
t_end = 3600 epsilon = 1E-10 diff = epsilon * 2 zeros = np.zeros(Ci.shape) while(t <= t_end and diff >= epsilon): #solve for the gradients in each direction l_xyz = ndimage.convolve(Ci, l, mode = "constant", cval = c_out) # l_y = ndimage.convolve(Ci, ly, mode = "constant", # cval = c_out) # l_z = ndimage.convolve(Ci, lz, mode = "constant", # cval = c_out) #first diffusion C = Ci + (l_xyz)*D*dt #MUST BE normalized by unit VOLUME temp_sink = (-sink*dt) / grid_vol temp_source = source*dt / grid_vol C += temp_sink + temp_source #get the summed difference diff = np.sum(np.abs(Ci - C)) #make sure its positive C = C * (C > 0.0) #update the old Ci = C #update the time step t += dt vv.use('qt4') vv.volshow3(C) app = vv.use() app.Run()
# create texture t = vv.Texture3D(axes, vol, renderStyle) # set clim if isinstance(clim, list): clim = tuple(clim) if isinstance(clim, tuple): t.SetClim(clim) # set colormap if cm is not None: t.colormap = cm # adjust axes if axesAdjust: if axes.daspectAuto is None: axes.daspectAuto = False axes.cameraType = '3d' axes.SetLimits() # done axes.Draw() return t if __name__ == "__main__": vol = vv.aVolume() t = vv.volshow3(vol) t.renderStyle = 'iso' # Isosurface rendering instead of MIP t.isoThreshold = 0.1
# create texture t = vv.Texture3D(axes, vol, renderStyle) # set clim if isinstance(clim,list): clim = tuple(clim) if isinstance(clim, tuple): t.SetClim(clim) # set colormap if cm is not None: t.colormap = cm # adjust axes if axesAdjust: if axes.daspectAuto is None: axes.daspectAuto = False axes.cameraType = '3d' axes.SetLimits() # done axes.Draw() return t if __name__ == "__main__": vol = vv.aVolume() t = vv.volshow3(vol) t.renderStyle = 'iso' # Isosurface rendering instead of MIP t.isoThreshold = 0.1