コード例 #1
0
    def find_natural_modes():
        # q = q_initial * 2
        # # K = spring_const * numpy.concatenate(B @ P_matrices) * 1.0 / mass # Multiplying by inverse mass to ger rid of mass matrix on right
        # F = (1.0 - (1.0 / rest_lens) * numpy.sqrt(numpy.einsum('ij,ij->i', q.T @ P_matrices.transpose((0,2,1)) @ B.T, (B @ P_matrices @ q))))
        # print(len(q_initial))
        # print(F.shape)
        # print(F)
        # print(len(springs))

        #K = -autograd.jacobian(compute_internal_forces)(q_initial) * 1.0 / mass
       
        # M_inv[0][0] = 0.0
        # M_inv[1][1] = 0.0
        # M_inv[2][2] = 0.0
        # M_inv[3][3] = 0.0

        force_fn = autograd.grad(neg_potential)
        K = autograd.jacobian(force_fn)(numpy.zeros(n_points*2)) #* 1.0/mass
        print(K)
        # K = K[2:-2,2:-2]
        # K = numpy.linalg.inv(K)
        print(K)
        import scipy

        w, v = scipy.linalg.eig(K)
        
        idx = w.argsort()[::-1]   
        w = w[idx]
        v = v[:,idx]
        print(w)

        # print(w)
        # print()
        # print(v)
        # print(w[0])
        # print(len(v))

        i = 0
        while True:
            # if numpy.abs(w[i]) > 0.0001:
            render(numpy.real_if_close(v[i] + q_initial), springs, save_frames=False)
            import time
            time.sleep(0.3)
            i = (i + 1) % len(v)
コード例 #2
0
ファイル: sim.py プロジェクト: itsvismay/research-experiments
    def find_natural_modes():
        # q = q_initial * 2
        # # K = spring_const * numpy.concatenate(B @ P_matrices) * 1.0 / mass # Multiplying by inverse mass to ger rid of mass matrix on right
        # F = (1.0 - (1.0 / rest_lens) * numpy.sqrt(numpy.einsum('ij,ij->i', q.T @ P_matrices.transpose((0,2,1)) @ B.T, (B @ P_matrices @ q))))
        # print(len(q_initial))
        # print(F.shape)
        # print(F)
        # print(len(springs))

        #K = -autograd.jacobian(compute_internal_forces)(q_initial) * 1.0 / mass
        M_inv = numpy.linalg.inv(mass_matrix)
        # M_inv[0][0] = 0.0
        # M_inv[1][1] = 0.0
        # M_inv[2][2] = 0.0
        # M_inv[3][3] = 0.0

        K = M_inv @ autograd.jacobian(autograd.grad(potential))(
            q_initial)  #* 1.0/mass
        print(K)
        # print(K)
        w, v = numpy.linalg.eig(K)

        print(w)
        # print()
        # print(v)
        # print(w[0])
        # print(len(v))

        i = 0
        while True:
            # if numpy.abs(w[i]) > 0.0001:
            render(numpy.real_if_close(v[i] * 0.5 + q_initial),
                   springs,
                   save_frames=False)
            import time
            time.sleep(1)
            i = (i + 1) % len(v)
コード例 #3
0
def main():
    ### Setup
    # autoencoder, encoder, decoder = load_autoencoder('models/12 17PM November 08 2017.h5')#models/2.7e-06.h5')
    # def encode(q):
    #     return encoder.predict(numpy.array([q]))[0].astype(numpy.float64)

    # def decode(z):
    #     return decoder.predict(numpy.array([z]))[0].astype(numpy.float64)
    encode, decode = train_model()

    # Constants
    d = 2  # dimensions
    I = numpy.identity(d)
    B = numpy.concatenate((I, -I), axis=1)  # Difference matrix

    # Simulation Parameters
    spring_const = 10.0  # Technically could vary per spring
    h = 0.005
    mass = 0.05
    # Initial conditions
    starting_stretch = 1  #0.6

    starting_points = numpy.array([
        [0, 1],
        [0, 0],
        [1, 1],
        [1, 0],
        [2, 1],
        [2, 0],
        [3, 1],
        [3, 0],
        [4, 1],
        [4, 0],
    ]) * 0.1 + 0.3
    n_points = len(starting_points)  # Num points
    q_initial = starting_points.flatten()
    z_initial = encode(q_initial)
    print("HIOIIIIII")
    print(q_initial)
    print(z_initial)
    print(decode(z_initial))

    pinned_points = numpy.array([0, 1])
    q_mask = numpy.ones(n_points * d, dtype=bool)
    q_mask[numpy.concatenate([pinned_points * d + i
                              for i in range(d)])] = False

    springs = [
        (0, 2),
        (0, 3),
        (2, 3),
        (1, 2),
        (1, 3),
        (2, 4),
        (2, 3),
        (2, 5),
        (3, 5),
        (3, 4),
        (4, 5),
        (4, 6),
        (4, 7),
        (5, 6),
        (5, 7),
        (6, 7),
        (6, 8),
        (6, 9),
        (7, 8),
        (7, 9),
        (8, 9),
    ]

    n_springs = len(springs)
    P_matrices = construct_P_matrices(springs, n_points, d)

    all_spring_offsets = (B @ (P_matrices @ q_initial).T).T
    rest_lens = numpy.linalg.norm(all_spring_offsets,
                                  axis=1) * starting_stretch

    mass_matrix = numpy.identity(len(q_initial)) * mass  # Mass matrix
    external_forces = numpy.array([0, -9.8] * n_points)

    def kinetic_energy(q_k, q_k1):
        """ Profile this to see if using numpy.dot is different from numpy.matmul (@)"""

        d_q = q_k1 - q_k
        energy = 1.0 / (2 * h**2) * d_q.T @ mass_matrix @ d_q

        return energy

    def potential_energy(q_k, q_k1):
        q_tilde = 0.5 * (q_k + q_k1)

        # sum = 0.0
        # for i in range(len(rest_lens)): # TODO I might be able to do this simply with @ (see all_spring_offsets)
        #     P_i = P_matrices[i]
        #     l_i = rest_lens[i]

        #     d_q_tilde_i_sq = q_tilde.T @ P_i.T @ B.T @ B @ P_i @ q_tilde
        #     sum += (1.0 - 1.0 / l_i * numpy.sqrt(d_q_tilde_i_sq)) ** 2

        # Optimized but ugly version
        sum = numpy.sum((1.0 - (1.0 / rest_lens) * numpy.sqrt(
            numpy.einsum('ij,ij->i', q_tilde.T @ P_matrices.transpose(
                (0, 2, 1)) @ B.T, (B @ P_matrices @ q_tilde))))**2)

        return 0.5 * spring_const * sum

    def discrete_lagrangian(q_k, q_k1):
        return kinetic_energy(q_k, q_k1) - potential_energy(q_k, q_k1)

    D1_Ld = autograd.grad(discrete_lagrangian, 0)  # (q_t, q_t+1) -> R^N*d
    D2_Ld = autograd.grad(discrete_lagrangian, 1)  # (q_t-1, q_t) -> R^N*d

    # Want D1_Ld + D2_Ld = 0
    # Do root finding
    def DEL(new_q, cur_q, prev_q):
        # SUPER hacky way of adding constrained points
        for i in pinned_points:
            new_q = numpy.insert(new_q, i * d, q_initial[i * d])
            new_q = numpy.insert(new_q, i * d + 1, q_initial[i * d + 1])

        res = D1_Ld(cur_q, new_q) + D2_Ld(
            prev_q, cur_q) + mass_matrix @ external_forces

        # SUPER hacky way of adding constrained points
        return res[q_mask]

    jac_DEL = autograd.jacobian(DEL, 0)

    def latent_DEL(new_z, cur_q, prev_q):
        new_q = decode(new_z)
        res = D1_Ld(cur_q, new_q) + D2_Ld(
            prev_q, cur_q) + mass_matrix @ external_forces

        return res

    def latent_DEL_objective(new_z, cur_q, prev_q):
        res = latent_DEL(new_z, cur_q, prev_q)

        return res.T @ res

    ### Simulation
    q_history = []
    save_freq = 1
    current_frame = 0
    output_path = 'pca_ae_configurations.pickle'

    prev_q = q_initial
    cur_q = q_initial
    prev_z = z_initial
    cur_z = z_initial
    while True:

        #sol = optimize.root(latent_DEL, cur_z, method='broyden1', args=(cur_q, prev_q))#, jac=jac_DEL) # Note numerical jacobian seems much faster
        sol = optimize.minimize(latent_DEL_objective,
                                cur_z,
                                args=(cur_q, prev_q),
                                method='L-BFGS-B',
                                options={
                                    'gtol': 1e-6,
                                    'eps': 1e-06,
                                    'disp': False
                                })
        prev_z = cur_z
        cur_z = sol.x

        prev_q = cur_q
        cur_q = decode(cur_z)
        render(cur_q * 10, springs, save_frames=True)

        if save_freq > 0:
            current_frame += 1
            q_history.append(cur_q)

            if current_frame % save_freq == 0:
                with open(output_path, 'wb') as f:
                    pickle.dump(q_history, f)
コード例 #4
0
def main():
    ### Setup
    sample_size = 100
    data = load_data('mass-spring-bar-configurations_small.pickle')
    numpy.random.shuffle(data)
    train_data = data[:sample_size]

    pca = PCA(n_components=5)
    pca.fit(train_data)

    def encode(q):
        return pca.transform(numpy.array([q]))[0]

    def decode(z):
        return pca.inverse_transform(numpy.array([z]))[0]

    # Constants
    d = 2  # dimensions
    I = numpy.identity(d)
    B = numpy.concatenate((I, -I), axis=1)  # Difference matrix

    # Simulation Parameters
    spring_const = 10.0  # Technically could vary per spring
    h = 0.0001
    mass = 0.05
    # Initial conditions
    starting_stretch = 1  #0.6

    starting_points = numpy.array([
        [0, 1],
        [0, 0],
        [1, 1],
        [1, 0],
        [2, 1],
        [2, 0],
        [3, 1],
        [3, 0],
        [4, 1],
        [4, 0],
    ]) * 0.1 + 0.3
    n_points = len(starting_points)  # Num points
    q_initial = starting_points.flatten()
    z_initial = encode(q_initial)

    pinned_points = numpy.array([0, 1])
    q_mask = numpy.ones(n_points * d, dtype=bool)
    q_mask[numpy.concatenate([pinned_points * d + i
                              for i in range(d)])] = False

    springs = [
        (0, 2),
        (0, 3),
        (2, 3),
        (1, 2),
        (1, 3),
        (2, 4),
        (2, 3),
        (2, 5),
        (3, 5),
        (3, 4),
        (4, 5),
        (4, 6),
        (4, 7),
        (5, 6),
        (5, 7),
        (6, 7),
        (6, 8),
        (6, 9),
        (7, 8),
        (7, 9),
        (8, 9),
    ]

    n_springs = len(springs)
    P_matrices = construct_P_matrices(springs, n_points, d)

    all_spring_offsets = (B @ (P_matrices @ q_initial).T).T
    rest_lens = numpy.linalg.norm(all_spring_offsets,
                                  axis=1) * starting_stretch

    mass_matrix = numpy.identity(len(q_initial)) * mass  # Mass matrix
    gravity_accel = numpy.array([0, -9.8] * n_points)

    def kinetic_energy(q_k, q_k1):
        """ Profile this to see if using numpy.dot is different from numpy.matmul (@)"""

        d_q = q_k1 - q_k
        energy = 1.0 / (2 * h**2) * d_q.T @ mass_matrix @ d_q

        return energy

    def potential_energy(q_k, q_k1):
        q_tilde = 0.5 * (q_k + q_k1)

        # sum = 0.0
        # for i in range(len(rest_lens)): # TODO I might be able to do this simply with @ (see all_spring_offsets)
        #     P_i = P_matrices[i]
        #     l_i = rest_lens[i]

        #     d_q_tilde_i_sq = q_tilde.T @ P_i.T @ B.T @ B @ P_i @ q_tilde
        #     sum += (1.0 - 1.0 / l_i * numpy.sqrt(d_q_tilde_i_sq)) ** 2

        # Optimized but ugly version
        sum = numpy.sum((1.0 - (1.0 / rest_lens) * numpy.sqrt(
            numpy.einsum('ij,ij->i', q_tilde.T @ P_matrices.transpose(
                (0, 2, 1)) @ B.T, (B @ P_matrices @ q_tilde))))**2)

        return 0.5 * spring_const * sum

    def discrete_lagrangian(q_k, q_k1):
        return kinetic_energy(q_k, q_k1) - potential_energy(q_k, q_k1)

    D1_Ld = autograd.grad(discrete_lagrangian, 0)  # (q_t, q_t+1) -> R^N*d
    D2_Ld = autograd.grad(discrete_lagrangian, 1)  # (q_t-1, q_t) -> R^N*d

    # Want D1_Ld + D2_Ld = 0
    # Do root finding
    def DEL(new_q, cur_q, prev_q):
        # SUPER hacky way of adding constrained points
        for i in pinned_points:
            new_q = numpy.insert(new_q, i * d, q_initial[i * d])
            new_q = numpy.insert(new_q, i * d + 1, q_initial[i * d + 1])

        res = D1_Ld(cur_q, new_q) + D2_Ld(prev_q,
                                          cur_q) + mass_matrix @ gravity_accel

        # SUPER hacky way of adding constrained points
        return res[q_mask]

    jac_DEL = autograd.jacobian(DEL, 0)

    def latent_DEL(new_z, cur_q, prev_q):
        new_q = decode(new_z)
        res = D1_Ld(cur_q, new_q) + D2_Ld(prev_q,
                                          cur_q) + mass_matrix @ gravity_accel

        return res

    def latent_DEL_objective(new_z, cur_q, prev_q):
        res = latent_DEL(new_z, cur_q, prev_q)

        return res.T @ res

    def gplc_objective(new_z, cur_z, prev_z):
        def decode(z):
            return z @ pca.components_ + pca.mean_

        new_q = decode(new_z)
        cur_q = decode(cur_z)
        prev_q = decode(prev_z)

        A = new_q - 2.0 * cur_q + prev_q
        F_ext = mass_matrix @ gravity_accel

        L = 0.5 * A.T @ mass_matrix @ A + h * potential_energy(
            new_q, new_q) - h * A.T @ F_ext

        return L

    # g = autograd.jacobian(gplc_objective, 0)
    grad_potential = autograd.grad(lambda x: potential_energy(x, x))

    def internal_forces(q):
        return -grad_potential(q)

    def grad(new_z, cur_z, prev_z):
        new_q = decode(new_z)
        cur_q = decode(cur_z)
        prev_q = decode(prev_z)

        A = new_q - 2.0 * cur_q + prev_q
        F_ext = mass_matrix @ gravity_accel

        J = pca.components_.T

        return J.T @ mass_matrix @ A - h * J.T @ internal_forces(
            new_q) - h * J.T @ F_ext

    print(grad(z_initial, z_initial, z_initial))
    print(
        autograd.jacobian(gplc_objective, 0)(z_initial, z_initial, z_initial))

    ### Simulation
    q_history = []
    save_freq = 1
    current_frame = 0
    output_path = 'pca_configurations.pickle'

    prev_q = q_initial
    cur_q = q_initial
    prev_z = z_initial
    cur_z = z_initial
    while True:

        # sol = optimize.root(latent_DEL, cur_z, method='broyden1', args=(cur_q, prev_q))#, jac=jac_DEL) # Note numerical jacobian seems much faster
        #sol = optimize.minimize(latent_DEL_objective, cur_z, args=(cur_q, prev_q), method='L-BFGS-B')
        sol = optimize.minimize(gplc_objective,
                                cur_z,
                                args=(cur_z, prev_z),
                                method='L-BFGS-B',
                                jac=grad)  #, options={'disp':True})
        prev_z = cur_z
        cur_z = sol.x

        prev_q = cur_q
        cur_q = decode(cur_z)
        render(cur_q * 10, springs, save_frames=True)
        # if current_frame == 1:
        #     time.sleep(4)
        # time.sleep(0.02)
        if save_freq > 0:
            current_frame += 1
            q_history.append(cur_q)

            if current_frame % save_freq == 0:
                with open(output_path, 'wb') as f:
                    pickle.dump(q_history, f)
コード例 #5
0
ファイル: sim.py プロジェクト: itsvismay/research-experiments
def main():
    ### Setup

    # Constants
    d = 2  # dimensions
    I = numpy.identity(d)
    B = numpy.concatenate((I, -I), axis=1)  # Difference matrix

    # Simulation Parameters
    spring_const = 10.0  # Technically could vary per spring
    h = 0.005
    mass = 0.001
    # Initial conditions
    starting_stretch = 1  #0.6

    # starting_points = numpy.array([
    #     [0.4, 0.5],
    #     [0.6, 0.5],
    #     [0.8, 0.5],
    #     [1, 0.5]
    # ])
    #Line
    # def generate_bar_points(n_sections, scale=1.0, translate=numpy.array([0.0, 0.0])):
    #     top = numpy.array([-2,1])
    #     bottom = numpy.array([-2,0])
    #     offset = numpy.array([1,0])

    #     return numpy.concatenate(
    #         #[[top + offset * i, bottom + offset * i] for i in range(n_sections + 2)]
    #         [[top + offset * i] for i in range(n_sections + 2)]
    #     ) * scale + translate

    # def generate_springs(n_sections):
    #     offset = numpy.array([1, 1])
    #     section = numpy.array([
    #         [0,1]
    #         # [0, 2],
    #         # [1, 3],
    #         # [2, 3]

    #         # [0, 3],
    #        # [2, 3],
    #         # [1, 2],
    #         # [1, 3]
    #     ])

    #     return numpy.concatenate([[[0,1]], numpy.concatenate([section + offset * i for i in range(n_sections + 1)]) ])
    # Big bar
    def generate_bar_points(n_sections,
                            scale=1.0,
                            translate=numpy.array([0.0, 0.0])):
        h = 1
        top = numpy.array([-2, h])
        bottom = numpy.array([-2, 0])
        bottom_2 = numpy.array([-2, -h])
        offset = numpy.array([1, 0])
        h_offset = numpy.array([0, 0])

        k = n_sections + 2
        points = numpy.concatenate(
            [[
                top + offset * i + h_offset * (1 - i / k), bottom + offset * i,
                bottom_2 + offset * i - h_offset * (1 - i / k)
            ] for i in range(k)]
            #[[top + offset * i] for i in range(n_sections + 2)]
        ) * scale + translate

        theta = -numpy.pi / 2

        rotMatrix = numpy.array([[numpy.cos(theta), -numpy.sin(theta)],
                                 [numpy.sin(theta),
                                  numpy.cos(theta)]])

        return (rotMatrix @ points.T).T

    def generate_springs(n_sections):
        offset = numpy.array([3, 3])
        section = numpy.array([[0, 3], [0, 4], [1, 5], [1, 4], [3, 4], [4, 5],
                               [2, 5], [1, 3], [2, 4]])

        return numpy.concatenate([[[0, 1], [1, 2]],
                                  numpy.concatenate([
                                      section + offset * i
                                      for i in range(n_sections + 1)
                                  ])])

    sections = 4
    starting_points = generate_bar_points(sections)

    n_points = len(starting_points)  # Num points
    q_initial = starting_points.flatten()

    pinned_points = numpy.array([0, 1, 2])
    q_mask = numpy.ones(n_points * d, dtype=bool)
    q_mask[numpy.concatenate([pinned_points * d + i
                              for i in range(d)])] = False

    springs = generate_springs(sections)

    n_springs = len(springs)
    P_matrices = construct_P_matrices(springs, n_points, d)

    all_spring_offsets = (B @ (P_matrices @ q_initial).T).T
    rest_lens = numpy.linalg.norm(all_spring_offsets,
                                  axis=1) * starting_stretch

    mass_matrix = numpy.identity(len(q_initial)) * mass  # Mass matrix
    # mass_matrix[0][0] =  10e10
    # mass_matrix[1][1] = 10e10
    # mass_matrix[-1][-1] = 10e10
    # mass_matrix[-2][-2] = 10e10
    external_forces = numpy.array([0, -9.8] * n_points)

    # Assemble offsets
    P = numpy.concatenate(B @ P_matrices)

    # Assemble forces
    Pf = numpy.array([numpy.zeros(len(springs) * 2)] * n_points * 2)
    for i, s in enumerate(springs):
        n0 = s[0] * 2
        n1 = s[1] * 2
        col = i * 2
        Pf[n0][col] = 1.0
        Pf[n0 + 1][col + 1] = 1.0
        Pf[n1][col] = -1.0
        Pf[n1 + 1][col + 1] = -1.0

# print(Pf.shape) #?????? why wrong

    def compute_internal_forces(q):
        # forces = numpy.array([[0.0, 0.0]] * len(springs))
        # for i, s in enumerate(springs):
        #     s0 = s[0] * 2
        #     s1 = s[1] * 2
        #     offset_vec = q[s0: s0 + 2] - q[s1: s1 + 2]
        #     length = numpy.linalg.norm(offset_vec)
        #     displacement_dir = offset_vec / length
        #     force = -spring_const * (length / rest_lens[i] - 1.0) * displacement_dir
        #     forces[i] = force

        offsets = (P @ q).reshape(n_springs, 2)
        lengths = numpy.sqrt((offsets * offsets).sum(axis=1))
        #normed_displacements = numpy.linalg.norm(offsets, axis=1)
        normed_displacements = offsets / lengths[:, None]
        forces = (spring_const * (lengths / rest_lens - 1.0)
                  )[:, None] * normed_displacements  # Forces per spring
        forces = forces.flatten()

        global_forces = Pf @ forces
        return global_forces

    # print(compute_internal_forces(q_initial))
    # print(autograd.jacobian(compute_internal_forces)(q_initial))

    def kinetic_energy(q_k, q_k1):
        """ Profile this to see if using numpy.dot is different from numpy.matmul (@)"""

        d_q = q_k1 - q_k
        energy = 1.0 / (2 * h**2) * d_q.T @ mass_matrix @ d_q

        return energy

    def potential_energy(q_k, q_k1):
        q_tilde = 0.5 * (q_k + q_k1)

        # mask = numpy.ones(n_points*2)
        # mask[0:4] = 0.0
        # q_tilde = q_tilde * mask
        # mask = numpy.abs(mask - 1.0)
        # mask[0:4] = q_initial[0:4]
        # q_tilde += mask

        # sum = 0.0
        # for i in range(len(rest_lens)): # TODO I might be able to do this simply with @ (see all_spring_offsets)
        #     P_i = P_matrices[i]
        #     l_i = rest_lens[i]

        #     d_q_tilde_i_sq = q_tilde.T @ P_i.T @ B.T @ B @ P_i @ q_tilde
        #     sum += (1.0 - 1.0 / l_i * numpy.sqrt(d_q_tilde_i_sq)) ** 2

        # Optimized but ugly version
        sum = numpy.sum((1.0 - (1.0 / rest_lens) * numpy.sqrt(
            numpy.einsum('ij,ij->i', q_tilde.T @ P_matrices.transpose(
                (0, 2, 1)) @ B.T, (B @ P_matrices @ q_tilde))))**2)

        return 0.5 * spring_const * sum

    def potential(q):
        return -potential_energy(q, q)

    def find_natural_modes():
        # q = q_initial * 2
        # # K = spring_const * numpy.concatenate(B @ P_matrices) * 1.0 / mass # Multiplying by inverse mass to ger rid of mass matrix on right
        # F = (1.0 - (1.0 / rest_lens) * numpy.sqrt(numpy.einsum('ij,ij->i', q.T @ P_matrices.transpose((0,2,1)) @ B.T, (B @ P_matrices @ q))))
        # print(len(q_initial))
        # print(F.shape)
        # print(F)
        # print(len(springs))

        #K = -autograd.jacobian(compute_internal_forces)(q_initial) * 1.0 / mass
        M_inv = numpy.linalg.inv(mass_matrix)
        # M_inv[0][0] = 0.0
        # M_inv[1][1] = 0.0
        # M_inv[2][2] = 0.0
        # M_inv[3][3] = 0.0

        K = M_inv @ autograd.jacobian(autograd.grad(potential))(
            q_initial)  #* 1.0/mass
        print(K)
        # print(K)
        w, v = numpy.linalg.eig(K)

        print(w)
        # print()
        # print(v)
        # print(w[0])
        # print(len(v))

        i = 0
        while True:
            # if numpy.abs(w[i]) > 0.0001:
            render(numpy.real_if_close(v[i] * 0.5 + q_initial),
                   springs,
                   save_frames=False)
            import time
            time.sleep(1)
            i = (i + 1) % len(v)

    # find_natural_modes()
    # exit()

    def discrete_lagrangian(q_k, q_k1):
        return kinetic_energy(q_k, q_k1) - potential_energy(q_k, q_k1)

    D1_Ld = autograd.grad(discrete_lagrangian, 0)  # (q_t, q_t+1) -> R^N*d
    D2_Ld = autograd.grad(discrete_lagrangian, 1)  # (q_t-1, q_t) -> R^N*d

    current_frame = 0

    def pinned_postions(i):
        x = q_initial[i * d] + numpy.cos(
            current_frame / 200 * 2 * numpy.pi) - 1
        y = q_initial[i * d + 1]

        return x, y

    # Want D1_Ld + D2_Ld = 0
    # Do root finding
    def DEL(new_q, cur_q, prev_q):
        # SUPER hacky way of adding constrained points
        for i in pinned_points:
            x, y = pinned_postions(i)
            new_q = numpy.insert(new_q, i * d, x)
            new_q = numpy.insert(new_q, i * d + 1, y)

        res = D1_Ld(cur_q, new_q) + D2_Ld(
            prev_q, cur_q) + mass_matrix @ external_forces

        # SUPER hacky way of adding constrained points
        return res[q_mask]

    jac_DEL = autograd.jacobian(DEL, 0)

    def DEL_objective(new_q, cur_q, prev_q):
        res = DEL(new_q, cur_q, prev_q)

        return res.T @ res

    ### Simulation
    q_history = []
    save_freq = 1000

    output_path = 'configurations'

    prev_q = q_initial
    cur_q = q_initial
    while True:
        # SUPER hacky
        constrained_q = cur_q[q_mask]

        sol = optimize.root(
            DEL, constrained_q, method='broyden1', args=(cur_q, prev_q)
        )  #, jac=jac_DEL) # Note numerical jacobian seems much faster
        #sol = optimize.minimize(DEL_objective, constrained_q, args=(cur_q, prev_q), method='L-BFGS-B', jac=autograd.jacobian(DEL_objective, 0))#, options={'gtol': 1e-6, 'eps': 1e-06, 'disp': False})
        prev_q = cur_q
        cur_q = sol.x

        # SUPER hacky way of adding constrained points
        for i in pinned_points:
            x, y = pinned_postions(i)
            cur_q = numpy.insert(cur_q, i * d, x)
            cur_q = numpy.insert(cur_q, i * d + 1, y)

        render(cur_q, springs, save_frames=False)

        if save_freq > 0:
            current_frame += 1
            q_history.append(cur_q)

            if current_frame % save_freq == 0:
                with open(output_path, 'wb') as f:
                    pickle.dump(q_history, f)
コード例 #6
0
def main():
    ### Setup

    # Constants
    d = 2  # dimensions
    I = numpy.identity(d)
    B = numpy.concatenate((I, -I), axis=1)  # Difference matrix

    # Simulation Parameters
    spring_const = 10.0 # Technically could vary per spring
    h = 0.005
    mass = 0.05
    # exit()
    # Initial conditions
    starting_stretch = 1#0.6

    # Big bar
    def generate_bar_points(n_sections, scale=1.0, translate=numpy.array([0.0, 0.0])):
        top = numpy.array([-2,1])
        bottom = numpy.array([-2,0])
        bottom_2 = numpy.array([-2,-1])
        offset = numpy.array([1,0])

        return numpy.concatenate(
            [[top + offset * i, bottom + offset * i, bottom_2 + offset * i] for i in range(n_sections + 2)]
            #[[top + offset * i] for i in range(n_sections + 2)]
        ) * scale + translate

    def generate_springs(n_sections):
        offset = numpy.array([3, 3])
        section = numpy.array([

            [0, 3],
            [0, 4],
            [1, 5],
            [1, 4],
            [3, 4],
            [4, 5],
            [2, 5],
            [1, 3],
            [2, 4]

        ])

        return numpy.concatenate([[[0,1], [1, 2]], numpy.concatenate([section + offset * i for i in range(n_sections + 1)]) ])

    # def generate_bar_points(n_sections, scale=1.0, translate=numpy.array([0.0, 0.0])):
    #     top = numpy.array([-2,1])
    #     bottom = numpy.array([-2,0])
    #     bottom_2 = numpy.array([-2,-1])
    #     offset = numpy.array([1,0])

    #     return numpy.concatenate(
    #         #[[top + offset * i, bottom + offset * i, bottom_2 + offset * i] for i in range(n_sections + 2)]
    #         [[top + offset * i] for i in range(n_sections + 2)]
    #     ) * scale + translate

    # def generate_springs(n_sections):
    #     offset = numpy.array([1, 1])
    #     section = numpy.array([

    #         [0, 1],

    #     ])

    #     return numpy.concatenate([section + offset * i for i in range(n_sections +1 )])

    sections = 10
    starting_points = generate_bar_points(sections)
    
    n_points = len(starting_points) # Num points
    q_initial = starting_points.flatten()

    pinned_points = numpy.array([0, 1])
    q_mask = numpy.ones(n_points * d, dtype=bool)
    q_mask[numpy.concatenate([pinned_points * d + i for i in range(d)])] = False
    q_mask_inv = numpy.logical_not(q_mask)

    springs = generate_springs(sections)

    n_springs = len(springs)

    P_matrices = construct_P_matrices(springs, n_points, d)
    
    all_spring_offsets = (B @ (P_matrices @ q_initial).T).T
    rest_lens = numpy.linalg.norm(all_spring_offsets, axis=1) * starting_stretch

    mass_matrix = numpy.identity(len(q_initial)) * mass # Mass matrix
    external_forces = numpy.array([0, -9.8] * n_points)

    # Assemble offsets
    P = numpy.concatenate(B @ P_matrices)

    # Assemble forces
    Pf = numpy.array([numpy.zeros(len(springs) * 2)] * n_points * 2)
    for i, s in enumerate(springs):
        n0 = s[0] * 2
        n1 = s[1] * 2
        col = i * 2
        Pf[n0][col] = 1.0
        Pf[n0+1][col+1] = 1.0
        Pf[n1][col] = -1.0
        Pf[n1+1][col+1] = -1.0
   # print(Pf.shape) #?????? why wrong

    def compute_internal_forces(q):
        # forces = numpy.array([[0.0, 0.0]] * len(springs))
        # for i, s in enumerate(springs):
        #     s0 = s[0] * 2
        #     s1 = s[1] * 2
        #     offset_vec = q[s0: s0 + 2] - q[s1: s1 + 2]
        #     length = numpy.linalg.norm(offset_vec)
        #     displacement_dir = offset_vec / length
        #     force = -spring_const * (length / rest_lens[i] - 1.0) * displacement_dir
        #     forces[i] = force

        offsets = (P @ q).reshape(n_springs, 2)
        lengths = numpy.sqrt((offsets * offsets).sum(axis=1))
        #normed_displacements = numpy.linalg.norm(offsets, axis=1)
        normed_displacements = offsets / lengths[:, None]
        forces = (spring_const * (lengths / rest_lens - 1.0))[:, None] * normed_displacements # Forces per spring
        forces = forces.flatten()

        global_forces = Pf @ forces
        return global_forces

    # print(compute_internal_forces(q_initial))
    # print(autograd.jacobian(compute_internal_forces)(q_initial))


    def kinetic_energy(q_k, q_k1):
        """ Profile this to see if using numpy.dot is different from numpy.matmul (@)"""

        d_q = q_k1 - q_k
        energy = 1.0 / (2 * h ** 2) * d_q.T @ mass_matrix @ d_q

        return energy

    def potential_energy(q_k, q_k1):
        q_tilde = 0.5 * (q_k + q_k1)

        # Optimized but ugly version
        sum = numpy.sum(
            (1.0 - (1.0 / rest_lens) * numpy.sqrt(numpy.einsum('ij,ij->i', q_tilde.T @ P_matrices.transpose((0,2,1)) @ B.T, (B @ P_matrices @ q_tilde)))) ** 2
        )

        return 0.5 * spring_const * sum

    def neg_potential(u):
        # q = numpy.array(q_sub_pinned)
        # for i in pinned_points:
        #     q = numpy.insert(q, i*d, q_initial[i*d])
        #     q = numpy.insert(q, i*d+1, q_initial[i*d+1])
        q = q_initial + u
        return -potential_energy(q, q)

    def find_natural_modes():
        # q = q_initial * 2
        # # K = spring_const * numpy.concatenate(B @ P_matrices) * 1.0 / mass # Multiplying by inverse mass to ger rid of mass matrix on right
        # F = (1.0 - (1.0 / rest_lens) * numpy.sqrt(numpy.einsum('ij,ij->i', q.T @ P_matrices.transpose((0,2,1)) @ B.T, (B @ P_matrices @ q))))
        # print(len(q_initial))
        # print(F.shape)
        # print(F)
        # print(len(springs))

        #K = -autograd.jacobian(compute_internal_forces)(q_initial) * 1.0 / mass
       
        # M_inv[0][0] = 0.0
        # M_inv[1][1] = 0.0
        # M_inv[2][2] = 0.0
        # M_inv[3][3] = 0.0

        force_fn = autograd.grad(neg_potential)
        K = autograd.jacobian(force_fn)(numpy.zeros(n_points*2)) #* 1.0/mass
        print(K)
        # K = K[2:-2,2:-2]
        # K = numpy.linalg.inv(K)
        print(K)
        import scipy

        w, v = scipy.linalg.eig(K)
        
        idx = w.argsort()[::-1]   
        w = w[idx]
        v = v[:,idx]
        print(w)

        # print(w)
        # print()
        # print(v)
        # print(w[0])
        # print(len(v))

        i = 0
        while True:
            # if numpy.abs(w[i]) > 0.0001:
            render(numpy.real_if_close(v[i] + q_initial), springs, save_frames=False)
            import time
            time.sleep(0.3)
            i = (i + 1) % len(v)
    # find_natural_modes()
    # exit()

    def discrete_lagrangian(q_k, q_k1):
        return kinetic_energy(q_k, q_k1) - potential_energy(q_k, q_k1)

    D1_Ld = autograd.grad(discrete_lagrangian, 0)  # (q_t, q_t+1) -> R^N*d
    D2_Ld = autograd.grad(discrete_lagrangian, 1)  # (q_t-1, q_t) -> R^N*d


    # Want D1_Ld + D2_Ld = 0
    # Do root finding
    def DEL(new_q, cur_q, prev_q):

        res = D1_Ld(cur_q, new_q) + D2_Ld(prev_q, cur_q) + mass_matrix @ external_forces

        # SUPER hacky way of adding constrained points
        return res

    jac_DEL = autograd.jacobian(DEL, 0)

    def DEL_objective(new_q, cur_q, prev_q):
        res = DEL(new_q, cur_q, prev_q)

        return res.T @ res

    ### Simulation
    q_history = []
    save_freq = 1000
    current_frame = 0
    output_path = 'configurations'

    prev_q = q_initial
    cur_q = q_initial
    while True:


        sol = optimize.root(DEL, cur_q, method='broyden1', args=(cur_q, prev_q))#, jac=jac_DEL)# Note numerical jacobian seems much faster
        #sol = optimize.minimize(DEL_objective, cur_q, args=(cur_q, prev_q), method='L-BFGS-B', jac=autograd.jacobian(DEL_objective, 0))#, options={'gtol': 1e-6, 'eps': 1e-06, 'disp': False})
        prev_q = cur_q
        cur_q = sol.x

        render(cur_q, springs, save_frames=False)

        if save_freq > 0:
            current_frame += 1
            q_history.append(cur_q)

            if current_frame % save_freq == 0:
                with open(output_path, 'wb') as f:
                    pickle.dump(q_history, f)
コード例 #7
0
    prev_q = q_initial
    cur_q = q_initial
    prev_z = z_initial
    cur_z = z_initial
    while True:
        constrained_q = cur_q[q_mask]
        sol = optimize.root(DEL, constrained_q, method='broyden1', args=(cur_q, prev_q))#, jac=jac_DEL) # Note numerical jacobian seems much faster
        #sol = optimize.minimize(latent_DEL_objective, cur_z, args=(cur_q, prev_q), method='L-BFGS-B')
        prev_q = cur_q
        cur_q = sol.x

        # SUPER hacky way of adding constrained points
        for i in pinned_points:
            x, y = pinned_postions(i)
            cur_q = numpy.insert(cur_q, i*d, x)
            cur_q = numpy.insert(cur_q, i*d+1, y)

        render(cur_q*10, springs, save_frames=False)

        if save_freq > 0:
            current_frame += 1
            q_history.append(cur_q)

            if current_frame % save_freq == 0:
                with open(output_path, 'wb') as f:
                    pickle.dump(q_history, f)

if __name__ == '__main__':
    main()