def update(frame_enumerated): img_i, frame = frame_enumerated ax_img.set_data(img.imread(image_paths[img_i])) ax_2d.clear() viz.show2Dpose(np.reshape(points_2d[0][img_i], (64, 1)), ax_2d) ax_2d.invert_yaxis() ax.clear() viz.show3Dpose(frame, ax)
def sample(): """Get samples from a model and visualize them""" enc_in, dec_out, poses3d = predict(True) # poses3dnew = [] # for p, e in zip(poses3d, enc_in): # poses3dnew.append(np.insert(e, range(1, len(e)+1, 2), p[1::3])) # poses3d = poses3dnew # poses3dnew = dec_out.copy() # poses3dnew[:,1::3] = poses3d[:,1::3] # poses3d = poses3dnew # Grab a random batch to visualize enc_in, dec_out, poses3d = map(np.vstack, [enc_in, dec_out, poses3d]) idx = np.random.permutation(enc_in.shape[0]) enc_in, dec_out, poses3d = enc_in[idx, :], dec_out[idx, :], poses3d[idx, :] # Visualize random samples import matplotlib.gridspec as gridspec # 1080p = 1,920 x 1,080 fig = plt.figure(figsize=(19.2, 10.8)) gs1 = gridspec.GridSpec(5, 9) # 5 rows, 9 columns gs1.update(wspace=-0.00, hspace=0.05) # set the spacing between axes. plt.axis('off') subplot_idx, exidx = 1, 1 nsamples = 15 for i in np.arange(nsamples): # Plot 2d pose ax1 = plt.subplot(gs1[subplot_idx - 1]) p2d = enc_in[exidx, :] viz.show2Dpose(p2d, ax1) ax1.invert_yaxis() # Plot 3d gt ax2 = plt.subplot(gs1[subplot_idx], projection='3d') p3d = dec_out[exidx, :] viz.show3Dpose(p3d, ax2) # Plot 3d predictions ax3 = plt.subplot(gs1[subplot_idx + 1], projection='3d') p3d = poses3d[exidx, :] viz.show3Dpose(p3d, ax3, lcolor="#9b59b6", rcolor="#2ecc71") exidx = exidx + 1 subplot_idx = subplot_idx + 3 plt.savefig('batch_poses') plt.show() code.interact(local=locals())
def plot_baseline_viz(pts, dataset='baseline'): ''' A small wrapper function around the visualizer from the baseline model. It visualizes just the sticks (skeleton) and a ground. Enables different datasets to be visualized. Must pass in skeleton representation with I and J, and the left-right distinguishing list. ''' fig = plt.figure() ax = fig.add_subplot(111, projection='3d') if dataset == 'baseline': show3Dpose(np.array(pts), ax) elif dataset == 'original': show3Dpose(np.array(pts), ax, I=I_ORIGINAL, J=J_ORIGINAL, LR=LR_ORIGINAL)
def predict_batch(data, center, scale, batch_size=128): """ Input: data: matrix with shape (#frames, 32) center: length-2 array with center coordinate scale: stacked hourglass scale parameter """ fig = plt.figure() ax_2d = fig.add_subplot(121) ax_3d = fig.add_subplot(122, projection='3d') data = np.array(data) # Wrap in another matrix if there's only a single clip if len(data.shape) == 1: data = np.array([data]) if data.shape[1] != 32: raise ValueError("Expected data shape to be (?, 32), got " + str(data.shape)) data, destination_indices = data_utils.process_stacked_hourglass(data) normalized_data, data_mean_3d, data_std_3d, dim_to_ignore_3d = normalize_batch(data) viz.show2Dpose(np.reshape(data[30], (64, 1)), ax_2d) ax_2d.invert_yaxis() with tf.Session() as sess: model = load_model(sess, batch_size) dp = 1.0 dec_out = np.zeros((normalized_data.shape[0], 48)) _, _, points = model.step(sess, normalized_data, dec_out, dp, isTraining=False) points = data_utils.unNormalizeData(points, data_mean_3d, data_std_3d, dim_to_ignore_3d) viz.show3Dpose(points[30,:], ax_3d) plt.show() points = np.reshape(points, (-1, 32, 3)) return points
def make_3dpoints(path): i = 0 path = Path(path) files = glob(str(path / '*.npy')) for name in files: t = np.load(name) if (i == 0): # for the first frame of the video alone t, ref = normalise(t, i, 0) t = scale(t) i = i + 1 else: # for the rest of the frames, since there is a reference now t, ref = normalise(t, i, ref) t = scale(t) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') viz.show3Dpose(t.flatten(), ax) plt.savefig(os.path.splitext(name)[0] + '.png') plt.close() os.remove(name) np.save( name, t ) # Overwrite the 3d pose with the normalized (rotation + scale) 3d pose
def main(_): # 出力用日付 now_str = "{0:%Y%m%d_%H%M%S}".format(datetime.datetime.now()) logger.debug("FLAGS.person_idx={0}".format(FLAGS.person_idx)) # ディレクトリ構成が変わったので、JSON出力と同階層に出力(2/9) if FLAGS.output is None: subdir = openpose_output_dir else: subdir = FLAGS.output os.makedirs(subdir, exist_ok=True) frame3d_dir = "{0}/frame3d".format(subdir) if os.path.exists(frame3d_dir): # 既にディレクトリがある場合、一旦削除 shutil.rmtree(frame3d_dir) os.makedirs(frame3d_dir) #関節位置情報ファイル posf = open(subdir + '/pos.txt', 'w') #正規化済みOpenpose位置情報ファイル smoothedf = open(subdir + '/smoothed.txt', 'w') #開始フレームインデックスファイル start_frame_f = open(subdir + '/start_frame.txt', 'w') idx = FLAGS.person_idx - 1 start_frame_index, smoothed = openpose_utils.read_openpose_json( "{0}/json".format(openpose_output_dir), idx, FLAGS.verbose == 3) # 開始フレームインデックスを保存 start_frame_f.write(str(start_frame_index)) start_frame_f.close() logger.info("reading and smoothing done. start feeding 3d-pose-baseline") logger.debug(smoothed) plt.figure(2) smooth_curves_plot = show_anim_curves(smoothed, plt) pngName = subdir + '/smooth_plot.png' smooth_curves_plot.savefig(pngName) enc_in = np.zeros((1, 64)) enc_in[0] = [0 for i in range(64)] actions = data_utils.define_actions(FLAGS.action) SUBJECT_IDS = [1, 5, 6, 7, 8, 9, 11] rcams = cameras.load_cameras(FLAGS.cameras_path, SUBJECT_IDS) train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.read_2d_predictions( actions, FLAGS.data_dir) train_set_3d, test_set_3d, data_mean_3d, data_std_3d, dim_to_ignore_3d, dim_to_use_3d, train_root_positions, test_root_positions = data_utils.read_3d_data( actions, FLAGS.data_dir, FLAGS.camera_frame, rcams, FLAGS.predict_14) # before_pose = None device_count = {"GPU": 1} png_lib = [] with tf.Session(config=tf.ConfigProto(device_count=device_count, allow_soft_placement=True)) as sess: #plt.figure(3) batch_size = 128 model = create_model(sess, actions, batch_size) # 入力画像のスケール調整のため、NeckからHipまでの距離を測定 length_neck2hip_mean = get_length_neck2hip_mean(smoothed) # 2D、3D結果の保存用リスト poses3d_list = [] poses2d_list = [] # 2dと3dのスケール比率計算のためのリスト length_2d_list = [] length_3d_list = [] for n, (frame, xy) in enumerate(smoothed.items()): if frame % 200 == 0: logger.info("calc idx {0}, frame {1}".format(idx, frame)) #if frame % 300 == 0: # print(frame) # map list into np array joints_array = np.zeros((1, 36)) joints_array[0] = [0 for i in range(36)] for o in range(len(joints_array[0])): #feed array with xy array joints_array[0][o] = xy[o] _data = joints_array[0] smoothedf.write(' '.join(map(str, _data))) smoothedf.write("\n") # mapping all body parts or 3d-pose-baseline format for i in range(len(order)): for j in range(2): # create encoder input enc_in[0][order[i] * 2 + j] = _data[i * 2 + j] for j in range(2): # Hip enc_in[0][0 * 2 + j] = (enc_in[0][1 * 2 + j] + enc_in[0][6 * 2 + j]) / 2 # Thorax # 3dPoseBaselineのThoraxの位置は、OpenPoseのNeckの位置より少し上のため調整する enc_in[0][13 * 2 + j] = 1.1 * enc_in[0][13 * 2 + j] - 0.1 * enc_in[0][0 * 2 + j] # Neck/Nose enc_in[0][14 * 2 + j] = (enc_in[0][15 * 2 + j] + enc_in[0][13 * 2 + j]) / 2 # Spine enc_in[0][12 * 2 + j] = (enc_in[0][0 * 2 + j] + enc_in[0][13 * 2 + j]) / 2 # set spine # spine_x = enc_in[0][24] # spine_y = enc_in[0][25] # logger.debug("enc_in - 1") # logger.debug(enc_in) poses2d = enc_in # 入力データの拡大 # neckからHipまでが110ピクセル程度になるように入力を拡大する # (教師データとスケールが大きく異なると精度が落ちるため) input_scaling_factor = 110 / length_neck2hip_mean enc_in = enc_in * input_scaling_factor enc_in = enc_in[:, dim_to_use_2d] mu = data_mean_2d[dim_to_use_2d] stddev = data_std_2d[dim_to_use_2d] enc_in = np.divide((enc_in - mu), stddev) dp = 1.0 dec_out = np.zeros((1, 48)) dec_out[0] = [0 for i in range(48)] _, _, poses3d = model.step(sess, enc_in, dec_out, dp, isTraining=False) all_poses_3d = [] enc_in = data_utils.unNormalizeData(enc_in, data_mean_2d, data_std_2d, dim_to_ignore_2d) poses3d = data_utils.unNormalizeData(poses3d, data_mean_3d, data_std_3d, dim_to_ignore_3d) gs1 = gridspec.GridSpec(1, 1) gs1.update(wspace=-0.00, hspace=0.05) # set the spacing between axes. plt.axis('off') all_poses_3d.append(poses3d) enc_in, poses3d = map(np.vstack, [enc_in, all_poses_3d]) subplot_idx, exidx = 1, 1 poses3d_list.append(poses3d[0]) poses2d_list.append(poses2d[0]) length_2d_list.append(sum_length_xy(poses2d[0], 2)) length_3d_list.append(sum_length_xy(poses3d[0], 3)) # OpenPose出力の(x, y)とBaseline出力のzから、3次元の位置を計算する # OpenPose出力値とBaseline出力値のスケール比率 # 骨格の長さの合計の比較することで、比率を推定 # 前後の91フレームで移動平均をとることで、結果を安定化する move_ave_length_2d = calc_move_average(length_2d_list, 91) move_ave_length_3d = calc_move_average(length_3d_list, 91) move_ave_length_2d[move_ave_length_2d == 0] = 1 # error防止 xy_scale = move_ave_length_3d / move_ave_length_2d # 以下の4つは仮の値で計算。多少違っていても、精度に影響はないと思う center_2d_x, center_2d_y = camera_center( openpose_output_dir) #動画の中心座標(動画の解像度の半分) logger.info("center_2d_x {0}".format(center_2d_x)) z_distance = 4000 # カメラから体までの距離(mm) 遠近の影響計算で使用 camera_incline = 0 # カメラの水平方向に対する下への傾き(度) teacher_camera_incline = 13 # 教師データ(Human3.6M)のカメラの傾き(下向きに平均13度) for frame, (poses3d, poses2d) in enumerate(zip(poses3d_list, poses2d_list)): # 誤差を減らすため、OpenPose出力の(x, y)と3dPoseBaseline出力のzから、3次元の位置を計算する poses3d_op_xy = np.zeros(96) for i in [0, 1, 2, 3, 6, 7, 8, 13, 15, 17, 18, 19, 25, 26, 27]: # Hipとの差分 dy = poses3d[i * 3 + 1] - poses3d[0 * 3 + 1] dz = poses3d[i * 3 + 2] - poses3d[0 * 3 + 2] # 教師データのカメラ傾きを補正 dz = dz - dy * math.tan( math.radians(teacher_camera_incline - camera_incline)) # 遠近によるx,yの拡大率 z_ratio = (z_distance + dz) / z_distance # x, yはOpenposeの値から計算 poses3d_op_xy[i * 3] = (poses2d[i * 2] - center_2d_x) * xy_scale[frame] * z_ratio poses3d_op_xy[i * 3 + 1] = (poses2d[i * 2 + 1] - center_2d_y) * xy_scale[frame] * z_ratio # zはBaselineの値から計算 poses3d_op_xy[i * 3 + 2] = dz # 12(Spine)、14(Neck/Nose)、15(Head)はOpenPoseの出力にないため、baseline(poses3d)から計算する for i in [12, 14, 15]: # 13(Thorax)は認識されることが多いため基準とする # 差分 dx = poses3d[i * 3] - poses3d[13 * 3] dy = poses3d[i * 3 + 1] - poses3d[13 * 3 + 1] dz = poses3d[i * 3 + 2] - poses3d[13 * 3 + 2] # 教師データのカメラ傾きを補正 dz = dz - dy * math.tan( math.radians(teacher_camera_incline - camera_incline)) # 13(Thorax)からの差分でx, y ,zを求める poses3d_op_xy[i * 3] = poses3d_op_xy[13 * 3] + dx poses3d_op_xy[i * 3 + 1] = poses3d_op_xy[13 * 3 + 1] + dy poses3d_op_xy[i * 3 + 2] = poses3d_op_xy[13 * 3 + 2] + dz # MMD上で少し顎を引くための処理 poses3d_op_xy[15 * 3] += 0.5 * (poses3d_op_xy[14 * 3] - poses3d_op_xy[13 * 3]) poses3d_op_xy[15 * 3 + 1] += 0.5 * (poses3d_op_xy[14 * 3 + 1] - poses3d_op_xy[13 * 3 + 1]) poses3d_op_xy[15 * 3 + 2] += 0.5 * (poses3d_op_xy[14 * 3 + 2] - poses3d_op_xy[13 * 3 + 2]) poses3d_list[frame] = poses3d_op_xy logger.info("calc ground y") # 最も高さが低い足の部位のYを取得(この座標系ではY値が大きい方が低い) foot_joint_no = [1, 2, 3, 6, 7, 8] max_pos = [] for frame, poses3d in enumerate(poses3d_list): max_pos.append(np.max([poses3d[i * 3 + 1] for i in foot_joint_no])) # 地面についている部位の位置(通常は足首)をY軸の0になるように移動する for frame, poses3d in enumerate(poses3d_list): # 120フレーム分の位置を取得 max_pos_slice = max_pos[int(np.max([0, frame - 60])):frame + 60] # 半分以上のフレームでは着地していると仮定し、メディアンを着地時の足の位置とする ankle_pos = np.median(max_pos_slice) poses3d_ground = np.zeros(96) for i in range(len(data_utils.H36M_NAMES)): poses3d_ground[i * 3] = poses3d[i * 3] poses3d_ground[i * 3 + 1] = poses3d[i * 3 + 1] - ankle_pos poses3d_ground[i * 3 + 2] = poses3d[i * 3 + 2] poses3d_list[frame] = poses3d_ground for frame, (poses3d, poses2d) in enumerate(zip(poses3d_list, poses2d_list)): if frame % 200 == 0: logger.info("output frame {}".format(frame)) # max = 0 # min = 10000 # logger.debug("enc_in - 2") # logger.debug(enc_in) for j in range(32): tmp = poses3d[j * 3 + 2] poses3d[j * 3 + 2] = -poses3d[j * 3 + 1] poses3d[j * 3 + 1] = tmp # if poses3d[i][j * 3 + 2] > max: # max = poses3d[i][j * 3 + 2] # if poses3d[i][j * 3 + 2] < min: # min = poses3d[i][j * 3 + 2] # for i in range(poses3d.shape[0]): # for j in range(32): # poses3d[i][j * 3 + 2] = max - poses3d[i][j * 3 + 2] + min # poses3d[i][j * 3] += (spine_x - 630) # poses3d[i][j * 3 + 2] += (500 - spine_y) # Plot 3d predictions ax = plt.subplot(gs1[subplot_idx - 1], projection='3d') ax.view_init(18, 280) # logger.debug(np.min(poses3d)) # if np.min(poses3d) < -1000 and before_pose is not None: # poses3d = before_pose p3d = poses3d # logger.debug("poses3d") # logger.debug(poses3d) if frame == 0: first_xyz = [0, 0, 0] first_xyz[0], first_xyz[1], first_xyz[2] = p3d[0], p3d[1], p3d[ 2] if level[FLAGS.verbose] <= logging.INFO: viz.show3Dpose(p3d, ax, lcolor="#9b59b6", rcolor="#2ecc71", add_labels=True, root_xyz=first_xyz) # 各フレームの単一視点からのはINFO時のみ pngName = frame3d_dir + '/tmp_{0:012d}.png'.format(frame) plt.savefig(pngName) png_lib.append(imageio.imread(pngName)) # before_pose = poses3d # 各フレームの角度別出力はデバッグ時のみ if level[FLAGS.verbose] == logging.DEBUG: for azim in [0, 45, 90, 135, 180, 225, 270, 315, 360]: ax2 = plt.subplot(gs1[subplot_idx - 1], projection='3d') ax2.view_init(18, azim) viz.show3Dpose(p3d, ax2, lcolor="#FF0000", rcolor="#0000FF", add_labels=True, root_xyz=first_xyz) pngName2 = frame3d_dir + '/tmp_{0:012d}_{1:03d}.png'.format( frame, azim) plt.savefig(pngName2) #関節位置情報の出力 write_pos_data(poses3d, ax, posf) posf.close() smoothedf.close() # INFO時は、アニメーションGIF生成 if level[FLAGS.verbose] <= logging.INFO: logger.info( "creating Gif {0}/movie_smoothing.gif, please Wait!".format( subdir)) imageio.mimsave('{0}/movie_smoothing.gif'.format(subdir), png_lib, fps=FLAGS.gif_fps) logger.info("Done!".format(pngName))
def main(_): enc_in = np.zeros((1, 64)) enc_in[0] = [0 for i in range(64)] actions = data_utils.define_actions(FLAGS.action) SUBJECT_IDS = [1, 5, 6, 7, 8, 9, 11] rcams = cameras.load_cameras(FLAGS.cameras_path, SUBJECT_IDS) train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.read_2d_predictions( actions, FLAGS.data_dir) train_set_3d, test_set_3d, data_mean_3d, data_std_3d, dim_to_ignore_3d, dim_to_use_3d, train_root_positions, test_root_positions = data_utils.read_3d_data( actions, FLAGS.data_dir, FLAGS.camera_frame, rcams, FLAGS.predict_14) device_count = {"GPU": 1} png_lib = [] sess = tf.Session(config=tf.ConfigProto( device_count=device_count, allow_soft_placement=True)) # plt.figure(3) batch_size = 128 model = create_model(sess, actions, batch_size) '''''' openpose_dirs = sorted([ name for name in os.listdir(openpose_output_dir) if os.path.isdir(os.path.join(openpose_output_dir, name)) ]) openpose_dirs = [openpose_output_dir + file for file in openpose_dirs] error_dirs = [] for dir in openpose_dirs: # try: file_name = os.path.basename(dir) file_to_save = '../data/3d-pose-baseline/' + file_name + '.npz' if not os.path.isfile(file_to_save): # If haven't already processed smoothed = read_openpose_json(dir) plt.figure(2) # smooth_curves_plot = show_anim_curves(smoothed, plt) # return # pngName = 'gif_output/smooth_plot.png' # smooth_curves_plot.savefig(pngName) # logger.info('writing gif_output/smooth_plot.png') if FLAGS.interpolation: logger.info("start interpolation") framerange = len(smoothed.keys()) joint_rows = 36 array = np.concatenate(list(smoothed.values())) array_reshaped = np.reshape(array, (framerange, joint_rows)) multiplier = FLAGS.multiplier multiplier_inv = 1 / multiplier out_array = np.array([]) for row in range(joint_rows): x = [] for frame in range(framerange): x.append(array_reshaped[frame, row]) frame = range(framerange) frame_resampled = np.arange(0, framerange, multiplier) spl = UnivariateSpline(frame, x, k=3) # relative smooth factor based on jnt anim curve min_x, max_x = min(x), max(x) smooth_fac = max_x - min_x smooth_resamp = 125 smooth_fac = smooth_fac * smooth_resamp spl.set_smoothing_factor(float(smooth_fac)) xnew = spl(frame_resampled) out_array = np.append(out_array, xnew) logger.info("done interpolating. reshaping {0} frames, please wait!!".format(framerange)) a = np.array([]) for frame in range(int(framerange * multiplier_inv)): jnt_array = [] for jnt in range(joint_rows): jnt_array.append(out_array[jnt * int(framerange * multiplier_inv) + frame]) a = np.append(a, jnt_array) a = np.reshape(a, (int(framerange * multiplier_inv), joint_rows)) out_array = a interpolate_smoothed = {} for frame in range(int(framerange * multiplier_inv)): interpolate_smoothed[frame] = list(out_array[frame]) # plt.figure(3) smoothed = interpolate_smoothed # interpolate_curves_plot = show_anim_curves(smoothed, plt) # pngName = 'gif_output/interpolate_{0}.png'.format(smooth_resamp) # interpolate_curves_plot.savefig(pngName) # logger.info('writing gif_output/interpolate_plot.png') iter_range = len(smoothed.keys()) positions_3d = [] for n, (frame, xy) in enumerate(smoothed.items()): logger.info("calc frame {0}/{1}".format(frame, iter_range)) # map list into np array joints_array = np.zeros((1, 36)) joints_array[0] = [0 for i in range(36)] for o in range(len(joints_array[0])): #feed array with xy array joints_array[0][o] = xy[o] _data = joints_array[0] # mapping all body parts or 3d-pose-baseline format for i in range(len(order)): for j in range(2): # create encoder input enc_in[0][order[i] * 2 + j] = _data[i * 2 + j] for j in range(2): # Hip enc_in[0][0 * 2 + j] = (enc_in[0][1 * 2 + j] + enc_in[0][6 * 2 + j]) / 2 # Neck/Nose enc_in[0][14 * 2 + j] = (enc_in[0][15 * 2 + j] + enc_in[0][12 * 2 + j]) / 2 # Thorax enc_in[0][13 * 2 + j] = 2 * enc_in[0][12 * 2 + j] - enc_in[0][14 * 2 + j] # set spine spine_x = enc_in[0][24] spine_y = enc_in[0][25] enc_in = enc_in[:, dim_to_use_2d] mu = data_mean_2d[dim_to_use_2d] stddev = data_std_2d[dim_to_use_2d] enc_in = np.divide((enc_in - mu), stddev) dp = 1.0 dec_out = np.zeros((1, 48)) dec_out[0] = [0 for i in range(48)] _, _, poses3d = model.step(sess, enc_in, dec_out, dp, isTraining=False) all_poses_3d = [] enc_in = data_utils.unNormalizeData(enc_in, data_mean_2d, data_std_2d, dim_to_ignore_2d) poses3d = data_utils.unNormalizeData(poses3d, data_mean_3d, data_std_3d, dim_to_ignore_3d) gs1 = gridspec.GridSpec(1, 1) gs1.update(wspace=-0.00, hspace=0.05) # set the spacing between axes. plt.axis('off') all_poses_3d.append( poses3d ) enc_in, poses3d = map( np.vstack, [enc_in, all_poses_3d] ) subplot_idx, exidx = 1, 1 _max = 0 _min = 10000 for i in range(poses3d.shape[0]): for j in range(32): tmp = poses3d[i][j * 3 + 2] poses3d[i][j * 3 + 2] = poses3d[i][j * 3 + 1] poses3d[i][j * 3 + 1] = tmp if poses3d[i][j * 3 + 2] > _max: _max = poses3d[i][j * 3 + 2] if poses3d[i][j * 3 + 2] < _min: _min = poses3d[i][j * 3 + 2] for i in range(poses3d.shape[0]): for j in range(32): poses3d[i][j * 3 + 2] = _max - poses3d[i][j * 3 + 2] + _min poses3d[i][j * 3] += (spine_x - 630) poses3d[i][j * 3 + 2] += (500 - spine_y) # Plot 3d predictions ax = plt.subplot(gs1[subplot_idx - 1], projection='3d') ax.view_init(18, -70) logger.debug(np.min(poses3d)) if np.min(poses3d) < -1000 and frame != 0: poses3d = before_pose p3d = poses3d logger.debug(poses3d) viz.show3Dpose(p3d, ax, lcolor="#9b59b6", rcolor="#2ecc71") positions_3d.append(p3d) pngName = 'png/pose_frame_{0}.png'.format(str(frame).zfill(12)) plt.savefig(pngName) if FLAGS.write_gif: png_lib.append(imageio.imread(pngName)) before_pose = poses3d np.savez_compressed(file_to_save, positions_3d=positions_3d) if FLAGS.write_gif: if FLAGS.interpolation: #take every frame on gif_fps * multiplier_inv png_lib = np.array([png_lib[png_image] for png_image in range(0,len(png_lib), int(multiplier_inv)) ]) logger.info("creating Gif png/animation_" + file_name + ".gif, please Wait!") imageio.mimsave("gif_output/animation_" + file_name + ".gif", png_lib, fps=FLAGS.gif_fps) logger.info("Done!".format(pngName)) # except: # error_dirs.append(dir) with open('error_op_3d_dirs.txt', 'w') as f: for item in error_dirs: f.write("%s\n" % item)
def sample(): """Get samples from a model and visualize them""" path = '{}/samples_sh'.format(FLAGS.train_dir) if not os.path.exists(path): os.makedirs(path) actions = data_utils.define_actions(FLAGS.action) # Load camera parameters SUBJECT_IDS = [1, 5, 6, 7, 8, 9, 11] rcams = cameras.load_cameras(FLAGS.cameras_path, SUBJECT_IDS) n_joints = 17 if not (FLAGS.predict_14) else 14 # Load 3d data and load (or create) 2d projections train_set_3d, test_set_3d, data_mean_3d, data_std_3d, dim_to_ignore_3d, dim_to_use_3d, train_root_positions, test_root_positions = data_utils.read_3d_data( actions, FLAGS.data_dir, FLAGS.camera_frame, rcams, FLAGS.predict_14) if FLAGS.use_sh: train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.read_2d_predictions( actions, FLAGS.data_dir) else: train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d, _ = data_utils.create_2d_data( actions, FLAGS.data_dir, rcams) device_count = {"GPU": 0} if FLAGS.use_cpu else {"GPU": 1} with tf.Session(config=tf.ConfigProto(device_count=device_count)) as sess: # === Create the model === batch_size = 128 model = create_model(sess, actions, batch_size) print("Model loaded") for key2d in test_set_2d.keys(): (subj, b, fname) = key2d # choose SittingDown action to visualize if b == 'SittingDown': print("Subject: {}, action: {}, fname: {}".format( subj, b, fname)) # keys should be the same if 3d is in camera coordinates key3d = key2d if FLAGS.camera_frame else ( subj, b, '{0}.h5'.format(fname.split('.')[0])) key3d = (subj, b, fname[:-3]) if ( fname.endswith('-sh')) and FLAGS.camera_frame else key3d enc_in = test_set_2d[key2d] n2d, _ = enc_in.shape dec_out = test_set_3d[key3d] n3d, _ = dec_out.shape assert n2d == n3d # Split into about-same-size batches enc_in = np.array_split(enc_in, n2d // batch_size) dec_out = np.array_split(dec_out, n3d // batch_size) # store all pose hypotheses in a list pose_3d_mdm = [[], [], [], [], []] for bidx in range(len(enc_in)): # Dropout probability 0 (keep probability 1) for sampling dp = 1.0 loss, _, out_all_components = model.step(sess, enc_in[bidx], dec_out[bidx], dp, isTraining=False) # denormalize the input 2d pose, ground truth 3d pose as well as 3d pose hypotheses from mdm out_all_components = np.reshape( out_all_components, [-1, model.HUMAN_3D_SIZE + 2, model.num_models]) out_mean = out_all_components[:, :model.HUMAN_3D_SIZE, :] enc_in[bidx] = data_utils.unNormalizeData( enc_in[bidx], data_mean_2d, data_std_2d, dim_to_ignore_2d) dec_out[bidx] = data_utils.unNormalizeData( dec_out[bidx], data_mean_3d, data_std_3d, dim_to_ignore_3d) poses3d = np.zeros( (out_mean.shape[0], 96, out_mean.shape[-1])) for j in range(out_mean.shape[-1]): poses3d[:, :, j] = data_utils.unNormalizeData( out_mean[:, :, j], data_mean_3d, data_std_3d, dim_to_ignore_3d) # extract the 17 joints dtu3d = np.hstack( (np.arange(3), dim_to_use_3d )) if not (FLAGS.predict_14) else dim_to_use_3d dec_out_17 = dec_out[bidx][:, dtu3d] pose_3d_17 = poses3d[:, dtu3d, :] sqerr = (pose_3d_17 - np.expand_dims(dec_out_17, axis=2))**2 dists = np.zeros( (sqerr.shape[0], n_joints, sqerr.shape[2])) for m in range(dists.shape[-1]): dist_idx = 0 for k in np.arange(0, n_joints * 3, 3): dists[:, dist_idx, m] = np.sqrt( np.sum(sqerr[:, k:k + 3, m], axis=1)) dist_idx = dist_idx + 1 [ pose_3d_mdm[i].append(poses3d[:, :, i]) for i in range(poses3d.shape[-1]) ] # Put all the poses together enc_in, dec_out = map(np.vstack, [enc_in, dec_out]) for i in range(poses3d.shape[-1]): pose_3d_mdm[i] = np.vstack(pose_3d_mdm[i]) # Convert back to world coordinates if FLAGS.camera_frame: N_CAMERAS = 4 N_JOINTS_H36M = 32 # Add global position back dec_out = dec_out + np.tile(test_root_positions[key3d], [1, N_JOINTS_H36M]) for i in range(poses3d.shape[-1]): pose_3d_mdm[i] = pose_3d_mdm[i] + np.tile( test_root_positions[key3d], [1, N_JOINTS_H36M]) # Load the appropriate camera subj, action, sname = key3d cname = sname.split('.')[1] # <-- camera name scams = {(subj, c + 1): rcams[(subj, c + 1)] for c in range(N_CAMERAS)} # cams of this subject scam_idx = [ scams[(subj, c + 1)][-1] for c in range(N_CAMERAS) ].index(cname) # index of camera used the_cam = scams[(subj, scam_idx + 1)] # <-- the camera used R, T, f, c, k, p, name = the_cam assert name == cname def cam2world_centered(data_3d_camframe): data_3d_worldframe = cameras.camera_to_world_frame( data_3d_camframe.reshape((-1, 3)), R, T) data_3d_worldframe = data_3d_worldframe.reshape( (-1, N_JOINTS_H36M * 3)) # subtract root translation return data_3d_worldframe - np.tile( data_3d_worldframe[:, :3], (1, N_JOINTS_H36M)) # Apply inverse rotation and translation dec_out = cam2world_centered(dec_out) for i in range(poses3d.shape[-1]): pose_3d_mdm[i] = cam2world_centered(pose_3d_mdm[i]) # sample some results to visualize np.random.seed(42) idx = np.random.permutation(enc_in.shape[0]) enc_in, dec_out = enc_in[idx, :], dec_out[idx, :] for i in range(poses3d.shape[-1]): pose_3d_mdm[i] = pose_3d_mdm[i][idx, :] exidx = 1 nsamples = 20 for i in np.arange(nsamples): fig = plt.figure(figsize=(20, 5)) subplot_idx = 1 gs1 = gridspec.GridSpec(1, 7) # 5 rows, 9 columns gs1.update(wspace=-0.00, hspace=0.05) # set the spacing between axes. plt.axis('off') # Plot 2d pose ax1 = plt.subplot(gs1[subplot_idx - 1]) p2d = enc_in[exidx, :] viz.show2Dpose(p2d, ax1) ax1.invert_yaxis() # Plot 3d gt ax2 = plt.subplot(gs1[subplot_idx], projection='3d') p3d = dec_out[exidx, :] viz.show3Dpose(p3d, ax2) # Plot 3d pose hypotheses for i in range(poses3d.shape[-1]): ax3 = plt.subplot(gs1[subplot_idx + i + 1], projection='3d') p3d = pose_3d_mdm[i][exidx] viz.show3Dpose(p3d, ax3, lcolor="#9b59b6", rcolor="#2ecc71") # plt.show() plt.savefig('{}/sample_{}_{}_{}_{}.png'.format( path, subj, action, scam_idx, exidx)) plt.close(fig) exidx = exidx + 1
>>>>>>> upstream/master p3d = poses3d if not poses3d is None: to_export = poses3d.tolist()[0] x,y,z = [[] for _ in range(3)] for o in range(0, len(to_export), 3): x.append(to_export[o]) y.append(to_export[o+1]) z.append(to_export[o+2]) export_units[frame]={} for jnt_index, (_x, _y, _z) in enumerate(zip(x,y,z)): export_units[frame][jnt_index] = {"translate": [_x, _y, _z]} viz.show3Dpose(p3d, ax, lcolor="#9b59b6", rcolor="#2ecc71") pngName = 'png/pose_frame_{0}.png'.format(str(frame).zfill(12)) plt.savefig(pngName) if FLAGS.write_gif: png_lib.append(imageio.imread(pngName)) if FLAGS.cache_on_fail: before_pose = poses3d if FLAGS.write_gif: if FLAGS.interpolation: #take every frame on gif_fps * multiplier_inv png_lib = np.array([png_lib[png_image] for png_image in range(0,len(png_lib), int(multiplier_inv)) ]) logger.info("creating Gif gif_output/animation.gif, please Wait!") imageio.mimsave('gif_output/animation.gif', png_lib, fps=FLAGS.gif_fps)
def main(_): global framenum #clear out all old frames os.system("rm png/*") #set done to empty array, it will hold the json files from openpose that we've already processed done = [] #initialize input tensor to 1x64 array of zeroes [[0. 0. 0. ...]] #this is list of numpy vectors to feed as encoder inputs (32 2d coordinates) enc_in = np.zeros((1, 64)) enc_in[0] = [0 for i in range(64)] #actions to run on, default is all actions = data_utils.define_actions(FLAGS.action) #the list of Human3.6m subjects to look at SUBJECT_IDS = [1, 5, 6, 7, 8, 9, 11] #load camera parameters from the h36m dataset rcams = cameras2.load_cameras(FLAGS.cameras_path, SUBJECT_IDS) #loads 2d data from precomputed Stacked Hourglass detections train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.read_2d_predictions( actions, FLAGS.data_dir) #loads 3d poses, zero-centres and normalizes them train_set_3d, test_set_3d, data_mean_3d, data_std_3d, dim_to_ignore_3d, dim_to_use_3d, train_root_positions, test_root_positions = data_utils.read_3d_data( actions, FLAGS.data_dir, FLAGS.camera_frame, rcams, FLAGS.predict_14) device_count = {"GPU": 0} png_lib = [] #run a tensorflow inference session with tf.Session(config=tf.ConfigProto(device_count=device_count, allow_soft_placement=True)) as sess: #plt.figure(3) #load pre-trained model batch_size = 128 model = create_model(sess, actions, batch_size) #infinitely show 3d pose visualization while True: #wait for key to be pressed key = cv2.waitKey(1) & 0xFF _, frame = cv2.VideoCapture( 0).read() #ignore the other returned value #resize and rotate the incoming image frame frame, W, H = resize_img(frame) frame = cv2.rotate(frame, cv2.ROTATE_90_COUNTERCLOCKWISE) start = time.time() #run posenet inference on the frame joints_2d = estimate_pose(frame) #throw out confidence score and flatten _data = joints_2d[..., :2].flatten() #open pop-up and draw the keypoints found img2D = draw_2Dimg(frame, joints_2d, 1) #fake the thorax point by finding midpt between left and right shoulder lt_should_x = _data[10] lt_should_y = _data[11] rt_should_x = _data[12] rt_should_y = _data[13] thorax = midpoint(lt_should_x, lt_should_y, rt_should_x, rt_should_y) #print("testing thorax pt at ", thorax) #insert thorax into data where it should be, at index 1 _data = np.insert(_data, 2, thorax[0]) _data = np.insert(_data, 3, thorax[1]) #print("new _data is ", _data) _data = np.around(_data) #set xy to the array of 2d joint data xy = _data #create new 1x36 array of zeroes, which will store the 18 2d keypoints joints_array = np.zeros((1, 36)) joints_array[0] = [0 for i in range(36)] #index into our data array index = 0 #iterates 18 times for o in range(int(len(joints_array[0]) / 2)): #feed array with xy array (the 18 keypoints), but switch ordering: posenet to openpose for j in range(2): #print("o is", o, "j is", j, "index is ", index) index_into_posenet_data = order_pnet_to_openpose[o] * 2 + j #print("putting posenet[", index_into_posenet_data, "], value ", xy[index_into_posenet_data], " , into joints_array[0][", index, "]") joints_array[0][index] = xy[index_into_posenet_data] index += 1 #set _data to the array containing the 36 coordinates of the 2d keypts _data = joints_array[0] #print("_data is ", _data) #mapping all body parts for 3d-pose-baseline format (32 2d coordinates) for i in range(len(order)): #iterates 14 times #select which coordinateof this point: x or y for j in range(2): #create encoder input, switching around the order of the joint points enc_in[0][order[i] * 2 + j] = _data[i * 2 + j] #now enc_in contains 14 points (28 total coordinates) #at this pt enc_in should be array of 64 vals for j in range(2): #place hip at index 0 enc_in[0][0 * 2 + j] = (enc_in[0][1 * 2 + j] + enc_in[0][6 * 2 + j]) / 2 #place neck/nose at index 14 enc_in[0][14 * 2 + j] = (enc_in[0][15 * 2 + j] + enc_in[0][12 * 2 + j]) / 2 #place thorax at index 13 enc_in[0][13 * 2 + j] = 2 * enc_in[0][12 * 2 + j] - enc_in[0][14 * 2 + j] #set spine found by openpose spine_x = enc_in[0][24] spine_y = enc_in[0][25] #dim_to_use_2d is always [0 1 2 3 4 5 6 7 12 13 14 15 16 17 24 25 26 27 30 31 34 35 36 37 38 39 50 51 52 53 54 55] #take 32 entries of enc_in enc_in = enc_in[:, dim_to_use_2d] #find mean of 2d data mu = data_mean_2d[dim_to_use_2d] #find stdev of 2d data stddev = data_std_2d[dim_to_use_2d] #subtract mean and divide std for all enc_in = np.divide((enc_in - mu), stddev) #dropout keep probability dp = 1.0 #output tensor, initialize it to zeroes. We'll get 16 joints with 3d coordinates #this is list of numpy vectors that are the expected decoder outputs dec_out = np.zeros((1, 48)) dec_out[0] = [0 for i in range(48)] #get the 3d poses by running the 3d-pose-baseline inference. Model operates on 32 points _, _, poses3d = model.step(sess, enc_in, dec_out, dp, isTraining=False) #poses3d comes back as a 1x96 array (I guess its 32 points) end = time.time() #print("ELAPSED: ", end-start) #hold our 3d poses while we're doing some post-processing all_poses_3d = [] #un-normalize the input and output data using the means and stdevs enc_in = data_utils.unNormalizeData(enc_in, data_mean_2d, data_std_2d, dim_to_ignore_2d) poses3d = data_utils.unNormalizeData(poses3d, data_mean_3d, data_std_3d, dim_to_ignore_3d) #create a grid for drawing gs1 = gridspec.GridSpec(1, 1) #set spacing between axes gs1.update(wspace=-0.00, hspace=0.05) plt.axis('off') #fill all_poses_3d with the 3d poses predicted by the model step fxn all_poses_3d.append(poses3d) #vstack stacks arrays in sequence vertically (row wise) #this doesn't do anything in this case, as far as I can tell enc_in, poses3d = map(np.vstack, [enc_in, all_poses_3d]) subplot_idx, exidx = 1, 1 _max = 0 _min = 10000 #iterates once for i in range(poses3d.shape[0]): #iterate over all 32 points in poses3d for j in range(32): #save the last coordinate of this point into tmp tmp = poses3d[i][j * 3 + 2] #swap the second and third coordinates of this pt poses3d[i][j * 3 + 2] = poses3d[i][j * 3 + 1] poses3d[i][j * 3 + 1] = tmp #keep track of max of last coordinate if poses3d[i][j * 3 + 2] > _max: _max = poses3d[i][j * 3 + 2] if poses3d[i][j * 3 + 2] < _min: _min = poses3d[i][j * 3 + 2] #iterates once for i in range(poses3d.shape[0]): #iterate over all 32 points in poses3d (2nd and 3rd coords have all been swapped at this pt) for j in range(32): #change the third coord of this pt, subtracting it from sum of max and min third coord to get new value poses3d[i][j * 3 + 2] = _max - poses3d[i][j * 3 + 2] + _min #modify first coord of this pt by adding the x coord of the spine found by 2d model poses3d[i][j * 3] += (spine_x - 630) #modify third coord of this pt by adding 500 minus y coord of spine found by 2d model poses3d[i][j * 3 + 2] += (500 - spine_y) #Plot 3d predictions ax = plt.subplot(gs1[subplot_idx - 1], projection='3d') ax.view_init(18, -70) logger.debug(np.min(poses3d)) #TODO: if something happened with the data, reuse data from last frame (before_pose) p3d = poses3d #plot the 3d skeleton viz.show3Dpose(p3d, ax, lcolor="#9b59b6", rcolor="#2ecc71") #keep track of this poses3d in case we need to reuse it for next frame before_pose = poses3d #save this frame as a png in the ./png/ folder pngName = 'png/test_{0}.png'.format(str(framenum)) #print("pngName is ", pngName) plt.savefig(pngName) #plt.show() #read this frame which was just saved as png img = cv2.imread(pngName, 0) rect_cpy = img.copy() #show this frame cv2.imshow('3d-pose-baseline', rect_cpy) framenum += 1 #quit if q is pressed if key == ord('q'): break sess.close()
def main(args): model = evaluation_util.load_model(vars(args)) chainer.serializers.load_npz(args.lift_model, model) # cap = cv.VideoCapture(args.input if args.input else 0) # 深度推定結果ディレクトリ({動画名}_json_{実行日時}_idx00) subdir = args.base_target frame3d_dir = "{0}/frame3d_gan".format(subdir) os.makedirs(frame3d_dir) #関節位置情報ファイル posf = open(subdir +'/pos_gan.txt', 'w') #正規化済みOpenpose位置情報ファイル smoothedf = open(subdir +'/smoothed_gan.txt', 'w') start_frame_index, smoothed = openpose_utils.read_openpose_json("{0}/json".format(subdir), 0) before_pose = None png_lib = [] for n, (frame, xy) in enumerate(smoothed.items()): if frame % 100 == 0: logger.info("calc idx {0}, frame {1}".format(0, frame)) logger.debug("xy") logger.debug(xy) points = [] for o in range(0,len(xy),2): points.append(np.array( [xy[o], xy[o+1]] )) logger.debug("points pre 36m") logger.debug(points) BODY_PARTS, POSE_PAIRS = parts(args) # Openpose位置情報をとりあえず出力する for poi in points: # logger.debug(poi) # logger.debug(poi.dtype) # logger.debug(poi.dtype == 'object') if poi.dtype == 'object': # logger.debug('poi is None') pass else: # logger.debug(' ' + str(poi[0]) + ' ' + str(poi[1])) smoothedf.write(' ' + str(poi[0]) + ' ' + str(poi[1])) smoothedf.write("\n") # 2d→3dに変換 points = to36M(points, BODY_PARTS) logger.debug("points after 36m") logger.debug(points) points = np.reshape(points, [1, -1]).astype('f') logger.debug("points reshape 36m") logger.debug(points) points_norm = projection_gan.pose.dataset.pose_dataset.pose_dataset_base.Normalization.normalize_2d(points) logger.debug("points_norm") logger.debug(points_norm) poses3d = create_pose(model, points_norm) logger.debug("poses3d") logger.debug(poses3d) # Plot 3d predictions subplot_idx, exidx = 1, 1 gs1 = gridspec.GridSpec(1, 1) gs1.update(wspace=-0.00, hspace=0.05) # set the spacing between axes. ax = plt.subplot(gs1[subplot_idx - 1], projection='3d') ax.view_init(18, 280) logger.debug(np.min(poses3d)) if np.min(poses3d) < -1000 and before_pose is not None: poses3d = before_pose p3d = poses3d xs = p3d[:, 0::3] ys = p3d[:, 1::3] zs = p3d[:, 2::3] # 拡大する xs *= 600 ys *= 600 zs *= 600 # 画像の出力だけYZ反転させる p3d_copy = copy.deepcopy(p3d) p3d_copy[:, 1::3] *= -1 p3d_copy[:, 2::3] *= -1 # 3D画像を出力する if level[args.verbose] <= logging.INFO: # d = 30 # img = evaluation_util.create_img_xyz(xs, ys, zs, np.pi * d / 180.) # cv.imwrite(os.path.join(frame3d_dir, "out_{0:012d}_{0:03d}_degree.png".format(n, d)), img) viz.show3Dpose(p3d_copy, ax, lcolor="#9b59b6", rcolor="#2ecc71", add_labels=True) # 各フレームの単一視点からのはINFO時のみ pngName = os.path.join(frame3d_dir, "3d_gan_{0:012d}.png".format(n)) plt.savefig(pngName) png_lib.append(imageio.imread(pngName)) before_pose = poses3d # 各フレームの角度別出力はデバッグ時のみ if level[args.verbose] == logging.DEBUG: for azim in [0, 45, 90, 135, 180, 225, 270, 315, 360]: ax2 = plt.subplot(gs1[subplot_idx - 1], projection='3d') ax2.view_init(18, azim) viz.show3Dpose(p3d, ax2, lcolor="#FF0000", rcolor="#0000FF", add_labels=True) pngName2 = os.path.join(frame3d_dir, "debug_{0:012d}_{1:03d}.png".format(n, azim)) plt.savefig(pngName2) # 3D関節位置情報を出力する for o in range(0,len(p3d[0]),3): logger.debug(str(o) + " "+ str(p3d[0][o]) +" "+ str(p3d[0][o+2]) +" "+ str(p3d[0][o+1] * -1) + ", ") posf.write(str(o) + " "+ str(p3d[0][o]) +" "+ str(p3d[0][o+2]) +" "+ str(p3d[0][o+1] * -1) + ", ") posf.write("\n") # # 各角度の出力はデバッグ時のみ # if level[args.verbose] == logging.DEBUG: # deg = 15 # for d in range(0, 360 + deg, deg): # img = evaluation_util.create_projection_img(pose, np.pi * d / 180.) # cv.imwrite(os.path.join(out_sub_dir, "rot_{0:03d}_degree.png".format(d)), img) n += 1 smoothedf.close() posf.close() # INFO時は、アニメーションGIF生成 if level[args.verbose] <= logging.INFO: logger.info("creating Gif {0}/movie_smoothing_gan.gif, please Wait!".format(subdir)) imageio.mimsave('{0}/movie_smoothing_gan.gif'.format(subdir), png_lib, fps=30)
def main(args): human36m_data_path = os.path.join('data', 'data_3d_' + "h36m" + '.npz') MUCO3DHP_path = "/home/lgh/data1/multi3Dpose/muco-3dhp/output/unaugmented_set_001" hid_dim = 128 num_layers = 4 non_local = True lr = 1.0e-3 epochs = 30 _lr_decay = 100000 lr_gamma = 0.96 max_norm = True num_workers = 8 snapshot = 5 batch_size = 64 print('==> Loading multi-person dataset...') #human36m_dataset_path = path.join(human36m_data_path) data_2d, data_3d, img_name, feature_mutual = get_MUCO3DHP_data( MUCO3DHP_path, args) ## N * (M*17) * 2 N * (M*17) * 3 numpy print(img_name[1]) ax = plt.subplot(111, projection='3d') #ax.scatter(data_3d[0, 0::4, 0], data_3d[0, 0::4, 1], data_3d[0, 0::4, 2]) viz.show3Dpose(data_3d[1, :, :], ax) plt.show() person_num = data_2d.shape[1] / 17 dataset = CMUPanoDataset(human36m_data_path, person_num) ### divide into trainsets and testsets 4/5 and 1/5 num = len(data_2d) train_num = num * 4 / 5 cudnn.benchmark = True device = torch.device("cuda") adj, adj_mutual = adj_mx_from_skeleton(dataset.skeleton(), person_num) #ok model_pos = MultiSemGCN(adj, adj_mutual, person_num, hid_dim, num_layers=num_layers, nodes_group=dataset.skeleton().joints_group() if non_local else None).to(device) #ok criterion = nn.MSELoss(reduction='mean').to(device) optimizer = torch.optim.Adam(model_pos.parameters(), lr=lr) start_epoch = 0 error_best = None glob_step = 0 lr_now = lr ckpt_dir_path = os.path.join( 'checkpoint_multi', datetime.datetime.now().isoformat() + "_l_%04d_hid_%04d_e_%04d_non_local_%d" % (num_layers, hid_dim, epochs, non_local)) if not os.path.exists(ckpt_dir_path): os.makedirs(ckpt_dir_path) print('=> Making checkpoint dir: {}'.format(ckpt_dir_path)) logger = Logger(os.path.join(ckpt_dir_path, 'log.txt')) logger.set_names( ['epoch', 'lr', 'loss_train', 'error_eval_p1', 'error_eval_p2']) train_loader = DataLoader(PoseGenerator(data_3d[:train_num], data_2d[:train_num], feature_mutual[:train_num]), batch_size=batch_size, shuffle=True, num_workers=num_workers, pin_memory=True) valid_loader = DataLoader(PoseGenerator(data_3d[train_num:], data_2d[train_num:], feature_mutual[train_num:]), batch_size=batch_size, shuffle=False, num_workers=num_workers, pin_memory=True) writer = SummaryWriter() for epoch in range(start_epoch, epochs): # Train for one epoch print('\nEpoch: %d | LR: %.8f' % (epoch + 1, lr_now)) epoch_loss, lr_now, glob_step = train(train_loader, model_pos, criterion, optimizer, device, lr, lr_now, glob_step, _lr_decay, lr_gamma, max_norm=max_norm) writer.add_scalar('epoch_loss', epoch_loss, epoch) # Evaluate error_eval_p1, error_eval_p2 = evaluate(valid_loader, model_pos, device) # Update log file logger.append( [epoch + 1, lr_now, epoch_loss, error_eval_p1, error_eval_p2]) # Save checkpoint if error_best is None or error_best > error_eval_p1: error_best = error_eval_p1 save_ckpt( { 'epoch': epoch + 1, 'lr': lr_now, 'step': glob_step, 'state_dict': model_pos.state_dict(), 'optimizer': optimizer.state_dict(), 'error': error_eval_p1 }, ckpt_dir_path, suffix='best') if (epoch + 1) % snapshot == 0: save_ckpt( { 'epoch': epoch + 1, 'lr': lr_now, 'step': glob_step, 'state_dict': model_pos.state_dict(), 'optimizer': optimizer.state_dict(), 'error': error_eval_p1 }, ckpt_dir_path) logger.close() writer.close() logger.plot(['loss_train', 'error_eval_p1']) savefig(os.path.join(ckpt_dir_path, 'log.eps'))
def hankgogo(gogodata, gogodatafake): """Get samples from a model and visualize them""" actions = data_utils.define_actions(FLAGS.action) SUBJECT_IDS = [1, 5, 6, 7, 8, 9, 11] rcams = cameras.load_cameras(FLAGS.cameras_path, SUBJECT_IDS) # Load 3d data and load (or create) 2d projections train_set_3d, test_set_3d, data_mean_3d, data_std_3d, dim_to_ignore_3d, dim_to_use_3d, train_root_positions, test_root_positions = data_utils.read_3d_data( actions, FLAGS.data_dir, FLAGS.camera_frame, rcams, FLAGS.predict_14) #if FLAGS.use_sh: # train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.read_2d_predictions(actions, FLAGS.data_dir) #else: train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.create_2d_data( actions, FLAGS.data_dir, rcams) print("done reading and normalizing data.") device_count = {"GPU": 0} if FLAGS.use_cpu else {"GPU": 1} with tf.Session(config=tf.ConfigProto(device_count=device_count)) as sess: # === Create the model === print("Creating %d layers of %d units." % (FLAGS.num_layers, FLAGS.linear_size)) batch_size = 1 model = create_model_my(sess, actions, batch_size) print("Model loaded") # Dropout probability 0 (keep probability 1) for sampling dp = 1.0 poses3d = model.step(sess, gogodata, isTraining=False) tesmp = poses3d poses3d = data_utils.unNormalizeData(poses3d, data_mean_3d, data_std_3d, dim_to_ignore_3d) model.saver.save(sess, os.path.join(mysave_dir, "gogo")) # Grab a random batch to visualize # enc_in, dec_out, poses3d = map( np.vstack, [enc_in, dec_out, poses3d] ) # idx = np.random.permutation( enc_in.shape[0] ) # enc_in, dec_out, poses3d = enc_in[idx, :], dec_out[idx, :], poses3d[idx, :] # Visualize random samples import matplotlib.gridspec as gridspec # 1080p = 1,920 x 1,080 fig = plt.figure(figsize=(19.2, 10.8)) gs1 = gridspec.GridSpec(5, 9) # 5 rows, 9 columns gs1.update(wspace=-0.00, hspace=0.05) # set the spacing between axes. plt.axis('off') subplot_idx, exidx = 1, 1 nsamples = 1 # Plot 2d pose #ax1 = plt.subplot(gs1[subplot_idx-1]) #p2d = enc_in[exidx,:] #viz.show2Dpose( p2d, ax1 ) #ax1.invert_yaxis() # Plot 3d gt #ax2 = plt.subplot(gs1[subplot_idx], projection='3d') #p3d = dec_out[exidx,:] #viz.show3Dpose( p3d, ax2 ) # Plot 3d predictions ax3 = plt.subplot(gs1[subplot_idx + 1], projection='3d') p3d = poses3d viz.show3Dpose(p3d, ax3, lcolor="#9b59b6", rcolor="#2ecc71") exidx = exidx + 1 subplot_idx = subplot_idx + 3 plt.show()
def main(_): smoothed = read_openpose_json() logger.info("reading and smoothing done. start feeding 3d-pose-baseline") plt.figure(2) smooth_curves_plot = show_anim_curves(smoothed, plt) pngName = 'png/smooth_plot.png' smooth_curves_plot.savefig(pngName) enc_in = np.zeros((1, 64)) enc_in[0] = [0 for i in range(64)] actions = data_utils.define_actions(FLAGS.action) SUBJECT_IDS = [1, 5, 6, 7, 8, 9, 11] rcams = cameras.load_cameras(FLAGS.cameras_path, SUBJECT_IDS) train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.read_2d_predictions( actions, FLAGS.data_dir) train_set_3d, test_set_3d, data_mean_3d, data_std_3d, dim_to_ignore_3d, dim_to_use_3d, train_root_positions, test_root_positions = data_utils.read_3d_data( actions, FLAGS.data_dir, FLAGS.camera_frame, rcams, FLAGS.predict_14) device_count = {"GPU": 1} png_lib = [] with tf.Session(config=tf.ConfigProto(device_count=device_count, allow_soft_placement=True)) as sess: #plt.figure(3) batch_size = 128 model = create_model(sess, actions, batch_size) for n, (frame, xy) in enumerate(smoothed.items()): logger.info("calc frame {0}".format(frame)) # map list into np array joints_array = np.zeros((1, 36)) joints_array[0] = [0 for i in range(36)] for o in range(len(joints_array[0])): #feed array with xy array joints_array[0][o] = xy[o] _data = joints_array[0] # mapping all body parts or 3d-pose-baseline format for i in range(len(order)): for j in range(2): # create encoder input enc_in[0][order[i] * 2 + j] = _data[i * 2 + j] for j in range(2): # Hip enc_in[0][0 * 2 + j] = (enc_in[0][1 * 2 + j] + enc_in[0][6 * 2 + j]) / 2 # Neck/Nose enc_in[0][14 * 2 + j] = (enc_in[0][15 * 2 + j] + enc_in[0][12 * 2 + j]) / 2 # Thorax enc_in[0][13 * 2 + j] = 2 * enc_in[0][12 * 2 + j] - enc_in[0][14 * 2 + j] # set spine spine_x = enc_in[0][24] spine_y = enc_in[0][25] enc_in = enc_in[:, dim_to_use_2d] mu = data_mean_2d[dim_to_use_2d] stddev = data_std_2d[dim_to_use_2d] enc_in = np.divide((enc_in - mu), stddev) dp = 1.0 dec_out = np.zeros((1, 48)) dec_out[0] = [0 for i in range(48)] _, _, poses3d = model.step(sess, enc_in, dec_out, dp, isTraining=False) all_poses_3d = [] enc_in = data_utils.unNormalizeData(enc_in, data_mean_2d, data_std_2d, dim_to_ignore_2d) poses3d = data_utils.unNormalizeData(poses3d, data_mean_3d, data_std_3d, dim_to_ignore_3d) gs1 = gridspec.GridSpec(1, 1) gs1.update(wspace=-0.00, hspace=0.05) # set the spacing between axes. plt.axis('off') all_poses_3d.append(poses3d) enc_in, poses3d = map(np.vstack, [enc_in, all_poses_3d]) subplot_idx, exidx = 1, 1 max = 0 min = 10000 for i in range(poses3d.shape[0]): for j in range(32): tmp = poses3d[i][j * 3 + 2] poses3d[i][j * 3 + 2] = poses3d[i][j * 3 + 1] poses3d[i][j * 3 + 1] = tmp if poses3d[i][j * 3 + 2] > max: max = poses3d[i][j * 3 + 2] if poses3d[i][j * 3 + 2] < min: min = poses3d[i][j * 3 + 2] for i in range(poses3d.shape[0]): for j in range(32): poses3d[i][j * 3 + 2] = max - poses3d[i][j * 3 + 2] + min poses3d[i][j * 3] += (spine_x - 630) poses3d[i][j * 3 + 2] += (500 - spine_y) # Plot 3d predictions ax = plt.subplot(gs1[subplot_idx - 1], projection='3d') ax.view_init(18, -70) logger.debug(np.min(poses3d)) if np.min(poses3d) < -1000: poses3d = before_pose p3d = poses3d logger.debug(poses3d) viz.show3Dpose(p3d, ax, lcolor="#9b59b6", rcolor="#2ecc71") pngName = 'png/test_{0}.png'.format(str(frame)) plt.savefig(pngName) png_lib.append(imageio.imread(pngName)) before_pose = poses3d logger.info("creating Gif png/movie_smoothing.gif, please Wait!") imageio.mimsave('png/movie_smoothing.gif', png_lib, fps=FLAGS.gif_fps) logger.info("Done!".format(pngName))
def sample(): """Get samples from a model and visualize them""" actions = data_utils.define_actions( FLAGS.action ) # Load camera parameters SUBJECT_IDS = [1,5,6,7,8,9,11] rcams = cameras.load_cameras(FLAGS.cameras_path, SUBJECT_IDS) # Load 3d data and load (or create) 2d projections train_set_3d, test_set_3d, data_mean_3d, data_std_3d, dim_to_ignore_3d, dim_to_use_3d, train_root_positions, test_root_positions = data_utils.read_3d_data( actions, FLAGS.data_dir, FLAGS.camera_frame, rcams, FLAGS.predict_14 ) if FLAGS.use_sh: train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.read_2d_predictions(actions, FLAGS.data_dir) else: train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.create_2d_data( actions, FLAGS.data_dir, rcams ) print( "done reading and normalizing data." ) device_count = {"GPU": 0} if FLAGS.use_cpu else {"GPU": 1} with tf.Session(config=tf.ConfigProto( device_count = device_count )) as sess: # === Create the model === print("Creating %d layers of %d units." % (FLAGS.num_layers, FLAGS.linear_size)) batch_size = 128 model = create_model(sess, actions, batch_size) print("Model loaded") for key2d in test_set_2d.keys(): (subj, b, fname) = key2d print( "Subject: {}, action: {}, fname: {}".format(subj, b, fname) ) # keys should be the same if 3d is in camera coordinates key3d = key2d if FLAGS.camera_frame else (subj, b, '{0}.h5'.format(fname.split('.')[0])) key3d = (subj, b, fname[:-3]) if (fname.endswith('-sh')) and FLAGS.camera_frame else key3d enc_in = test_set_2d[ key2d ] n2d, _ = enc_in.shape dec_out = test_set_3d[ key3d ] n3d, _ = dec_out.shape assert n2d == n3d # Split into about-same-size batches enc_in = np.array_split( enc_in, n2d // batch_size ) dec_out = np.array_split( dec_out, n3d // batch_size ) all_poses_3d = [] for bidx in range( len(enc_in) ): # Dropout probability 0 (keep probability 1) for sampling dp = 1.0 _, _, poses3d = model.step(sess, enc_in[bidx], dec_out[bidx], dp, isTraining=False) # denormalize enc_in[bidx] = data_utils.unNormalizeData( enc_in[bidx], data_mean_2d, data_std_2d, dim_to_ignore_2d ) dec_out[bidx] = data_utils.unNormalizeData( dec_out[bidx], data_mean_3d, data_std_3d, dim_to_ignore_3d ) poses3d = data_utils.unNormalizeData( poses3d, data_mean_3d, data_std_3d, dim_to_ignore_3d ) all_poses_3d.append( poses3d ) # Put all the poses together enc_in, dec_out, poses3d = map( np.vstack, [enc_in, dec_out, all_poses_3d] ) # Convert back to world coordinates if FLAGS.camera_frame: N_CAMERAS = 4 N_JOINTS_H36M = 32 # Add global position back dec_out = dec_out + np.tile( test_root_positions[ key3d ], [1,N_JOINTS_H36M] ) # Load the appropriate camera subj, _, sname = key3d cname = sname.split('.')[1] # <-- camera name scams = {(subj,c+1): rcams[(subj,c+1)] for c in range(N_CAMERAS)} # cams of this subject scam_idx = [scams[(subj,c+1)][-1] for c in range(N_CAMERAS)].index( cname ) # index of camera used the_cam = scams[(subj, scam_idx+1)] # <-- the camera used R, T, f, c, k, p, name = the_cam assert name == cname def cam2world_centered(data_3d_camframe): data_3d_worldframe = cameras.camera_to_world_frame(data_3d_camframe.reshape((-1, 3)), R, T) data_3d_worldframe = data_3d_worldframe.reshape((-1, N_JOINTS_H36M*3)) # subtract root translation return data_3d_worldframe - np.tile( data_3d_worldframe[:,:3], (1,N_JOINTS_H36M) ) # Apply inverse rotation and translation dec_out = cam2world_centered(dec_out) poses3d = cam2world_centered(poses3d) # Grab a random batch to visualize enc_in, dec_out, poses3d = map( np.vstack, [enc_in, dec_out, poses3d] ) idx = np.random.permutation( enc_in.shape[0] ) enc_in, dec_out, poses3d = enc_in[idx, :], dec_out[idx, :], poses3d[idx, :] # Visualize random samples import matplotlib.gridspec as gridspec # 1080p = 1,920 x 1,080 fig = plt.figure( figsize=(19.2, 10.8) ) gs1 = gridspec.GridSpec(5, 9) # 5 rows, 9 columns gs1.update(wspace=-0.00, hspace=0.05) # set the spacing between axes. plt.axis('off') subplot_idx, exidx = 1, 1 nsamples = 15 for i in np.arange( nsamples ): # Plot 2d pose ax1 = plt.subplot(gs1[subplot_idx-1]) p2d = enc_in[exidx,:] viz.show2Dpose( p2d, ax1 ) ax1.invert_yaxis() # Plot 3d gt ax2 = plt.subplot(gs1[subplot_idx], projection='3d') p3d = dec_out[exidx,:] viz.show3Dpose( p3d, ax2 ) # Plot 3d predictions ax3 = plt.subplot(gs1[subplot_idx+1], projection='3d') p3d = poses3d[exidx,:] viz.show3Dpose( p3d, ax3, lcolor="#9b59b6", rcolor="#2ecc71" ) exidx = exidx + 1 subplot_idx = subplot_idx + 3 plt.show()
def main(_): smoothed = read_openpose_json() logger.info("reading and smoothing done. start feeding 3d-pose-baseline") plt.figure(2) smooth_curves_plot = show_anim_curves(smoothed, plt) pngName = FLAGS.output_dirname + '/supplemental' + '/smooth_plot.png' smooth_curves_plot.savefig(pngName) if FLAGS.interpolation: framerange = len(smoothed.keys()) joint_rows = 36 array = np.concatenate(list(smoothed.values())) array_reshaped = np.reshape(array, (framerange, joint_rows)) multiplier = 0.1 multiplier_inv = 1 / multiplier out_array = np.array([]) for row in range(joint_rows): x = [] for frame in range(framerange): x.append(array_reshaped[frame, row]) frame = range(framerange) frame_resampled = np.arange(0, framerange, multiplier) spl = UnivariateSpline(frame, x, k=3) min_x, max_x = min(x), max(x) smooth_fac = max_x - min_x smooth_fac = smooth_fac * 125 spl.set_smoothing_factor(float(smooth_fac)) xnew = spl(frame_resampled) out_array = np.append(out_array, xnew) logger.info("done interpolating") a = np.array([]) for frame in range(int(framerange * multiplier_inv)): jnt_array = [] #print(frame) for jnt in range(joint_rows): jnt_array.append( out_array[jnt * int(framerange * multiplier_inv) + frame]) a = np.append(a, jnt_array) a = np.reshape(a, (int(framerange * multiplier_inv), joint_rows)) out_array = a interpolate_smoothed = {} for frame in range(int(framerange * multiplier_inv)): interpolate_smoothed[frame] = list(out_array[frame]) plt.figure(3) smoothed = interpolate_smoothed interpolate_curves_plot = show_anim_curves(smoothed, plt) pngName = FLAGS.output_dirname + '/supplemental' + '/interpolate_plot.png' interpolate_curves_plot.savefig(pngName) enc_in = np.zeros((1, 64)) enc_in[0] = [0 for i in range(64)] actions = data_utils.define_actions(FLAGS.action) SUBJECT_IDS = [1, 5, 6, 7, 8, 9, 11] rcams = cameras.load_cameras(FLAGS.cameras_path, SUBJECT_IDS) train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.read_2d_predictions( actions, FLAGS.data_dir) train_set_3d, test_set_3d, data_mean_3d, data_std_3d, dim_to_ignore_3d, dim_to_use_3d, train_root_positions, test_root_positions = data_utils.read_3d_data( actions, FLAGS.data_dir, FLAGS.camera_frame, rcams, FLAGS.predict_14) device_count = {"GPU": 1} png_lib = [] with tf.Session(config=tf.ConfigProto(device_count=device_count, allow_soft_placement=True)) as sess: plt.figure(4) batch_size = 128 model = create_model(sess, actions, batch_size) for n, (frame, xy) in enumerate(smoothed.items()): logger.info("calc frame {0}".format(frame)) # map list into np array joints_array = np.zeros((1, 36)) joints_array[0] = [0 for i in range(36)] for o in range(len(joints_array[0])): #feed array with xy array joints_array[0][o] = xy[o] _data = joints_array[0] # mapping all body parts or 3d-pose-baseline format for i in range(len(order)): for j in range(2): # create encoder input enc_in[0][order[i] * 2 + j] = _data[i * 2 + j] for j in range(2): # Hip enc_in[0][0 * 2 + j] = (enc_in[0][1 * 2 + j] + enc_in[0][6 * 2 + j]) / 2 # Neck/Nose enc_in[0][14 * 2 + j] = (enc_in[0][15 * 2 + j] + enc_in[0][12 * 2 + j]) / 2 # Thorax enc_in[0][13 * 2 + j] = 2 * enc_in[0][12 * 2 + j] - enc_in[0][14 * 2 + j] # set spine spine_x = enc_in[0][24] spine_y = enc_in[0][25] enc_in = enc_in[:, dim_to_use_2d] mu = data_mean_2d[dim_to_use_2d] stddev = data_std_2d[dim_to_use_2d] enc_in = np.divide((enc_in - mu), stddev) dp = 1.0 dec_out = np.zeros((1, 48)) dec_out[0] = [0 for i in range(48)] _, _, poses3d = model.step(sess, enc_in, dec_out, dp, isTraining=False) all_poses_3d = [] enc_in = data_utils.unNormalizeData(enc_in, data_mean_2d, data_std_2d, dim_to_ignore_2d) poses3d = data_utils.unNormalizeData(poses3d, data_mean_3d, data_std_3d, dim_to_ignore_3d) gs1 = gridspec.GridSpec(1, 1) gs1.update(wspace=-0.00, hspace=0.05) # set the spacing between axes. plt.axis('off') all_poses_3d.append(poses3d) enc_in, poses3d = map(np.vstack, [enc_in, all_poses_3d]) subplot_idx, exidx = 1, 1 _max = 0 _min = 10000 for i in range(poses3d.shape[0]): for j in range(32): tmp = poses3d[i][j * 3 + 2] poses3d[i][j * 3 + 2] = poses3d[i][j * 3 + 1] poses3d[i][j * 3 + 1] = tmp if poses3d[i][j * 3 + 2] > _max: _max = poses3d[i][j * 3 + 2] if poses3d[i][j * 3 + 2] < _min: _min = poses3d[i][j * 3 + 2] for i in range(poses3d.shape[0]): for j in range(32): poses3d[i][j * 3 + 2] = _max - poses3d[i][j * 3 + 2] + _min poses3d[i][j * 3] += (spine_x - 630) poses3d[i][j * 3 + 2] += (500 - spine_y) # Plot 3d predictions ax = plt.subplot(gs1[subplot_idx - 1], projection='3d') ax.view_init(18, -70) logger.debug(np.min(poses3d)) if np.min(poses3d) < -1000: poses3d = before_pose p3d = poses3d logger.debug(poses3d) viz.show3Dpose(p3d, ax, lcolor="#9b59b6", rcolor="#2ecc71") pngName = FLAGS.output_dirname + '/' + FLAGS.output_filename + '_{0}.png'.format( str(frame)) if FLAGS.write_output_img: plt.savefig(pngName) #png_lib.append(imageio.imread(pngName)) before_pose = poses3d if FLAGS.write_gif: logger.info("creating Gif movie_smoothing.gif, please Wait!") imageio.mimsave(FLAGS.output_dirname + '/supplemental' + '/movie_smoothing.gif', png_lib, fps=FLAGS.gif_fps) logger.info("Done!".format(pngName))
def main(_): smoothed = read_openpose_json() '''plt.figure(2) smooth_curves_plot = show_anim_curves(smoothed, plt) #return pngName = 'gif_output/smooth_plot.png' smooth_curves_plot.savefig(pngName) logger.info('writing gif_output/smooth_plot.png')''' if FLAGS.interpolation: logger.info("start interpolation") framerange = len(smoothed.keys()) joint_rows = 36 array = np.concatenate(list(smoothed.values())) array_reshaped = np.reshape(array, (framerange, joint_rows)) multiplier = FLAGS.multiplier multiplier_inv = 1 / multiplier out_array = np.array([]) for row in range(joint_rows): x = [] for frame in range(framerange): x.append(array_reshaped[frame, row]) frame = range(framerange) frame_resampled = np.arange(0, framerange, multiplier) spl = UnivariateSpline(frame, x, k=3) #relative smooth factor based on jnt anim curve min_x, max_x = min(x), max(x) smooth_fac = max_x - min_x smooth_resamp = 125 smooth_fac = smooth_fac * smooth_resamp spl.set_smoothing_factor(float(smooth_fac)) xnew = spl(frame_resampled) out_array = np.append(out_array, xnew) logger.info( "done interpolating. reshaping {0} frames, please wait!!".format( framerange)) a = np.array([]) for frame in range(int(framerange * multiplier_inv)): jnt_array = [] for jnt in range(joint_rows): jnt_array.append( out_array[jnt * int(framerange * multiplier_inv) + frame]) a = np.append(a, jnt_array) a = np.reshape(a, (int(framerange * multiplier_inv), joint_rows)) out_array = a interpolate_smoothed = {} for frame in range(int(framerange * multiplier_inv)): interpolate_smoothed[frame] = list(out_array[frame]) '''plt.figure(3) smoothed = interpolate_smoothed interpolate_curves_plot = show_anim_curves(smoothed, plt) pngName = 'gif_output/interpolate_{0}.png'.format(smooth_resamp) interpolate_curves_plot.savefig(pngName) logger.info('writing gif_output/interpolate_plot.png')''' enc_in = np.zeros((1, 64)) enc_in[0] = [0 for i in range(64)] actions = data_utils.define_actions(FLAGS.action) SUBJECT_IDS = [1, 5, 6, 7, 8, 9, 11] rcams = cameras.load_cameras(FLAGS.cameras_path, SUBJECT_IDS) train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.read_2d_predictions( actions, FLAGS.data_dir) train_set_3d, test_set_3d, data_mean_3d, data_std_3d, dim_to_ignore_3d, dim_to_use_3d, train_root_positions, test_root_positions = data_utils.read_3d_data( actions, FLAGS.data_dir, FLAGS.camera_frame, rcams, FLAGS.predict_14) device_count = {"GPU": 1} png_lib = [] with tf.Session(config=tf.ConfigProto(device_count=device_count, allow_soft_placement=True)) as sess: #plt.figure(3) batch_size = 128 model = create_model(sess, actions, batch_size) iter_range = len(smoothed.keys()) rows = 0 filename = "keyjoints_proband_222_01.xlsx" workbook = xlsxwriter.Workbook(filename) worksheet = workbook.add_worksheet() for n, (frame, xy) in enumerate(smoothed.items()): logger.info("calc frame {0}/{1}".format(frame, iter_range)) # map list into np array joints_array = np.zeros((1, 36)) joints_array[0] = [0 for i in range(36)] for o in range(len(joints_array[0])): #feed array with xy array joints_array[0][o] = xy[o] _data = joints_array[0] # mapping all body parts or 3d-pose-baseline format for i in range(len(order)): for j in range(2): # create encoder input enc_in[0][order[i] * 2 + j] = _data[i * 2 + j] for j in range(2): # Hip enc_in[0][0 * 2 + j] = (enc_in[0][1 * 2 + j] + enc_in[0][6 * 2 + j]) / 2 # Neck/Nose enc_in[0][14 * 2 + j] = (enc_in[0][15 * 2 + j] + enc_in[0][12 * 2 + j]) / 2 # Thorax enc_in[0][13 * 2 + j] = 2 * enc_in[0][12 * 2 + j] - enc_in[0][14 * 2 + j] # set spine spine_x = enc_in[0][24] spine_y = enc_in[0][25] enc_in = enc_in[:, dim_to_use_2d] mu = data_mean_2d[dim_to_use_2d] stddev = data_std_2d[dim_to_use_2d] enc_in = np.divide((enc_in - mu), stddev) dp = 1.0 dec_out = np.zeros((1, 48)) dec_out[0] = [0 for i in range(48)] _, _, poses3d = model.step(sess, enc_in, dec_out, dp, isTraining=False) all_poses_3d = [] enc_in = data_utils.unNormalizeData(enc_in, data_mean_2d, data_std_2d, dim_to_ignore_2d) poses3d = data_utils.unNormalizeData(poses3d, data_mean_3d, data_std_3d, dim_to_ignore_3d) gs1 = gridspec.GridSpec(1, 1) gs1.update(wspace=-0.00, hspace=0.05) # set the spacing between axes. plt.axis('off') all_poses_3d.append(poses3d) enc_in, poses3d = map(np.vstack, [enc_in, all_poses_3d]) subplot_idx, exidx = 1, 1 _max = 0 _min = 10000 for i in range(poses3d.shape[0]): for j in range(32): tmp = poses3d[i][j * 3 + 2] poses3d[i][j * 3 + 2] = poses3d[i][j * 3 + 1] poses3d[i][j * 3 + 1] = tmp if poses3d[i][j * 3 + 2] > _max: _max = poses3d[i][j * 3 + 2] if poses3d[i][j * 3 + 2] < _min: _min = poses3d[i][j * 3 + 2] for i in range(poses3d.shape[0]): for j in range(32): poses3d[i][j * 3 + 2] = _max - poses3d[i][j * 3 + 2] + _min poses3d[i][j * 3] += (spine_x - 630) poses3d[i][j * 3 + 2] += (500 - spine_y) # Plot 3d predictions #fig = plt.figure( figsize=(12.8, 7.2) ) ax = plt.subplot(gs1[subplot_idx - 1], projection='3d') #ax.view_init(18, -70) logger.debug(np.min(poses3d)) if np.min(poses3d) < -1000: poses3d = before_pose p3d = poses3d logger.debug(poses3d) #viz.Ax3DPose(ax, lcolor="#9b59b6", rcolor="#2ecc71") viz.show3Dpose(p3d, ax, lcolor="#9b59b6", rcolor="#2ecc71") #ax.scatter(p3d, c='b', marker='o') #result = viz.show3Dpose(p3d,ax) #print(p3d) ax.set_xlabel('X Label') ax.set_ylabel('Y Label') ax.set_zlabel('Z Label') ax.set_aspect('equal') #print(p3d) #plt.show() col = 0 for i in p3d[0]: worksheet.write(rows, col, i) col += 1 #.append(i) rows += 1 pngName = '{}_keypoints.png'.format(str(frame)) plt.savefig(pngName) if FLAGS.write_gif: png_lib.append(imageio.imread(pngName)) before_pose = poses3d workbook.close() if FLAGS.write_gif: if FLAGS.interpolation: #take every frame on gif_fps * multiplier_inv png_lib = np.array([ png_lib[png_image] for png_image in range(0, len(png_lib), int(multiplier_inv)) ]) logger.info("creating Gif gif_output/animation.gif, please Wait!") imageio.mimsave('gif_output/animation.gif', png_lib, fps=FLAGS.gif_fps) logger.info("Done!".format(pngName))
def main(_): # 出力用日付 now_str = "{0:%Y%m%d_%H%M%S}".format(datetime.datetime.now()) logger.debug("FLAGS.person_idx={0}".format(FLAGS.person_idx)) # 日付+indexディレクトリ作成 subdir = '{0}/{1}_3d_{2}_idx{3:02d}'.format( os.path.dirname(openpose_output_dir), os.path.basename(openpose_output_dir), now_str, FLAGS.person_idx) os.makedirs(subdir) frame3d_dir = "{0}/frame3d".format(subdir) os.makedirs(frame3d_dir) #関節位置情報ファイル posf = open(subdir + '/pos.txt', 'w') #正規化済みOpenpose位置情報ファイル smoothedf = open(subdir + '/smoothed.txt', 'w') idx = FLAGS.person_idx - 1 smoothed = openpose_utils.read_openpose_json(openpose_output_dir, idx, level[FLAGS.verbose] == 3) logger.info("reading and smoothing done. start feeding 3d-pose-baseline") logger.debug(smoothed) plt.figure(2) smooth_curves_plot = show_anim_curves(smoothed, plt) pngName = subdir + '/smooth_plot.png' smooth_curves_plot.savefig(pngName) enc_in = np.zeros((1, 64)) enc_in[0] = [0 for i in range(64)] actions = data_utils.define_actions(FLAGS.action) SUBJECT_IDS = [1, 5, 6, 7, 8, 9, 11] rcams = cameras.load_cameras(FLAGS.cameras_path, SUBJECT_IDS) train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.read_2d_predictions( actions, FLAGS.data_dir) train_set_3d, test_set_3d, data_mean_3d, data_std_3d, dim_to_ignore_3d, dim_to_use_3d, train_root_positions, test_root_positions = data_utils.read_3d_data( actions, FLAGS.data_dir, FLAGS.camera_frame, rcams, FLAGS.predict_14) before_pose = None device_count = {"GPU": 1} png_lib = [] with tf.Session(config=tf.ConfigProto(device_count=device_count, allow_soft_placement=True)) as sess: #plt.figure(3) batch_size = 128 model = create_model(sess, actions, batch_size) for n, (frame, xy) in enumerate(smoothed.items()): logger.info("calc idx {0}, frame {1}".format(idx, frame)) # map list into np array joints_array = np.zeros((1, 36)) joints_array[0] = [0 for i in range(36)] for o in range(len(joints_array[0])): #feed array with xy array joints_array[0][o] = xy[o] _data = joints_array[0] smoothedf.write(' '.join(map(str, _data))) smoothedf.write("\n") # mapping all body parts or 3d-pose-baseline format for i in range(len(order)): for j in range(2): # create encoder input enc_in[0][order[i] * 2 + j] = _data[i * 2 + j] for j in range(2): # Hip enc_in[0][0 * 2 + j] = (enc_in[0][1 * 2 + j] + enc_in[0][6 * 2 + j]) / 2 # Neck/Nose enc_in[0][14 * 2 + j] = (enc_in[0][15 * 2 + j] + enc_in[0][12 * 2 + j]) / 2 # Thorax enc_in[0][13 * 2 + j] = 2 * enc_in[0][12 * 2 + j] - enc_in[0][14 * 2 + j] # set spine spine_x = enc_in[0][24] spine_y = enc_in[0][25] # logger.debug("enc_in - 1") # logger.debug(enc_in) enc_in = enc_in[:, dim_to_use_2d] mu = data_mean_2d[dim_to_use_2d] stddev = data_std_2d[dim_to_use_2d] enc_in = np.divide((enc_in - mu), stddev) dp = 1.0 dec_out = np.zeros((1, 48)) dec_out[0] = [0 for i in range(48)] _, _, poses3d = model.step(sess, enc_in, dec_out, dp, isTraining=False) all_poses_3d = [] enc_in = data_utils.unNormalizeData(enc_in, data_mean_2d, data_std_2d, dim_to_ignore_2d) poses3d = data_utils.unNormalizeData(poses3d, data_mean_3d, data_std_3d, dim_to_ignore_3d) gs1 = gridspec.GridSpec(1, 1) gs1.update(wspace=-0.00, hspace=0.05) # set the spacing between axes. plt.axis('off') all_poses_3d.append(poses3d) enc_in, poses3d = map(np.vstack, [enc_in, all_poses_3d]) subplot_idx, exidx = 1, 1 max = 0 min = 10000 # logger.debug("enc_in - 2") # logger.debug(enc_in) for i in range(poses3d.shape[0]): for j in range(32): tmp = poses3d[i][j * 3 + 2] poses3d[i][j * 3 + 2] = poses3d[i][j * 3 + 1] poses3d[i][j * 3 + 1] = tmp if poses3d[i][j * 3 + 2] > max: max = poses3d[i][j * 3 + 2] if poses3d[i][j * 3 + 2] < min: min = poses3d[i][j * 3 + 2] for i in range(poses3d.shape[0]): for j in range(32): poses3d[i][j * 3 + 2] = max - poses3d[i][j * 3 + 2] + min poses3d[i][j * 3] += (spine_x - 630) poses3d[i][j * 3 + 2] += (500 - spine_y) # Plot 3d predictions ax = plt.subplot(gs1[subplot_idx - 1], projection='3d') ax.view_init(18, 280) logger.debug(np.min(poses3d)) if np.min(poses3d) < -1000 and before_pose is not None: poses3d = before_pose p3d = poses3d # logger.debug("poses3d") # logger.debug(poses3d) if level[FLAGS.verbose] == logging.INFO: viz.show3Dpose(p3d, ax, lcolor="#9b59b6", rcolor="#2ecc71", add_labels=True) # 各フレームの単一視点からのはINFO時のみ pngName = frame3d_dir + '/tmp_{0:012d}.png'.format(frame) plt.savefig(pngName) png_lib.append(imageio.imread(pngName)) before_pose = poses3d # 各フレームの角度別出力はデバッグ時のみ if level[FLAGS.verbose] == logging.DEBUG: for azim in [0, 45, 90, 135, 180, 225, 270, 315, 360]: ax2 = plt.subplot(gs1[subplot_idx - 1], projection='3d') ax2.view_init(18, azim) viz.show3Dpose(p3d, ax2, lcolor="#FF0000", rcolor="#0000FF", add_labels=True) pngName2 = frame3d_dir + '/tmp_{0:012d}_{1:03d}.png'.format( frame, azim) plt.savefig(pngName2) #関節位置情報の出力 write_pos_data(poses3d, ax, posf) posf.close() # INFO時は、アニメーションGIF生成 if level[FLAGS.verbose] == logging.INFO: logger.info( "creating Gif {0}/movie_smoothing.gif, please Wait!".format( subdir)) imageio.mimsave('{0}/movie_smoothing.gif'.format(subdir), png_lib, fps=FLAGS.gif_fps) logger.info("Done!".format(pngName))
def main(_): done = [] enc_in = np.zeros((1, 64)) enc_in[0] = [0 for i in range(64)] actions = data_utils.define_actions(FLAGS.action) SUBJECT_IDS = [1, 5, 6, 7, 8, 9, 11] rcams = cameras.load_cameras(FLAGS.cameras_path, SUBJECT_IDS) train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.read_2d_predictions( actions, FLAGS.data_dir) train_set_3d, test_set_3d, data_mean_3d, data_std_3d, dim_to_ignore_3d, dim_to_use_3d, train_root_positions, test_root_positions = data_utils.read_3d_data( actions, FLAGS.data_dir, FLAGS.camera_frame, rcams, FLAGS.predict_14) device_count = {"GPU": 0} png_lib = [] with tf.Session(config=tf.ConfigProto(device_count=device_count, allow_soft_placement=True)) as sess: #plt.figure(3) batch_size = 128 model = create_model(sess, actions, batch_size) rows = 0 filename = "Realtimedata.xlsx" workbook = xlsxwriter.Workbook(filename) worksheet = workbook.add_worksheet() while True: key = cv2.waitKey(1) & 0xFF #logger.info("start reading data") # check for other file types list_of_files = glob.iglob("{0}/*".format( openpose_output_dir)) # You may use iglob in Python3 latest_file = "" try: latest_file = max(list_of_files, key=os.path.getctime) except ValueError: #empthy dir pass if not latest_file: continue try: _file = file_name = latest_file print(latest_file) if not os.path.isfile(_file): raise Exception("No file found!!, {0}".format(_file)) data = json.load(open(_file)) #take first person _data = data["people"][0]["pose_keypoints_2d"] xy = [] #ignore confidence score """for o in range(0,len(_data),3): xy.append(_data[o]) xy.append(_data[o+1])""" if len(_data) >= 53: #openpose incl. confidence score #ignore confidence score for o in range(0, len(_data), 3): xy.append(_data[o]) xy.append(_data[o + 1]) else: #tf-pose-estimation xy = _data frame_indx = re.findall("(\d+)", file_name) frame = int(frame_indx[0]) joints_array = np.zeros((1, 36)) joints_array[0] = [0 for i in range(36)] for o in range(len(joints_array[0])): #feed array with xy array joints_array[0][o] = xy[o] _data = joints_array[0] # mapping all body parts or 3d pose offline format for i in range(len(order)): for j in range(2): # create encoder input enc_in[0][order[i] * 2 + j] = _data[i * 2 + j] for j in range(2): # Hip enc_in[0][0 * 2 + j] = (enc_in[0][1 * 2 + j] + enc_in[0][6 * 2 + j]) / 2 # Neck/Nose enc_in[0][14 * 2 + j] = (enc_in[0][15 * 2 + j] + enc_in[0][12 * 2 + j]) / 2 # Thorax enc_in[0][ 13 * 2 + j] = 2 * enc_in[0][12 * 2 + j] - enc_in[0][14 * 2 + j] # set spine spine_x = enc_in[0][24] spine_y = enc_in[0][25] enc_in = enc_in[:, dim_to_use_2d] mu = data_mean_2d[dim_to_use_2d] stddev = data_std_2d[dim_to_use_2d] enc_in = np.divide((enc_in - mu), stddev) dp = 1.0 dec_out = np.zeros((1, 48)) dec_out[0] = [0 for i in range(48)] _, _, poses3d = model.step(sess, enc_in, dec_out, dp, isTraining=False) all_poses_3d = [] enc_in = data_utils.unNormalizeData(enc_in, data_mean_2d, data_std_2d, dim_to_ignore_2d) poses3d = data_utils.unNormalizeData(poses3d, data_mean_3d, data_std_3d, dim_to_ignore_3d) gs1 = gridspec.GridSpec(1, 1) gs1.update(wspace=-0.00, hspace=0.05) # set the spacing between axes. plt.axis('off') all_poses_3d.append(poses3d) enc_in, poses3d = map(np.vstack, [enc_in, all_poses_3d]) subplot_idx, exidx = 1, 1 _max = 0 _min = 10000 for i in range(poses3d.shape[0]): for j in range(32): tmp = poses3d[i][j * 3 + 2] poses3d[i][j * 3 + 2] = poses3d[i][j * 3 + 1] poses3d[i][j * 3 + 1] = tmp if poses3d[i][j * 3 + 2] > _max: _max = poses3d[i][j * 3 + 2] if poses3d[i][j * 3 + 2] < _min: _min = poses3d[i][j * 3 + 2] for i in range(poses3d.shape[0]): for j in range(32): poses3d[i][j * 3 + 2] = _max - poses3d[i][j * 3 + 2] + _min poses3d[i][j * 3] += (spine_x - 630) poses3d[i][j * 3 + 2] += (500 - spine_y) for val in min_vex: # f.write(str(val) + ' ' + str(p_vex[i]) + ''); # gait_list1.append({'IX': "%i" % val[0], # 'IY': "%i" % val[1], # 'Ix': "%i" % p_vex[i][0], # 'Iy': "%i" % p_vex[i][1], # 'Iz': "%i" % p_vex[i][2], # }) gait_list1.append(val[0]) gait_list1.append(val[1]) gait_list1.append(p_vex[i][0]) gait_list1.append(p_vex[i][1]) gait_list1.append(p_vex[i][2]) points.append( " %f %f %f %d %d %d 0\n" % (p_vex[i][0], p_vex[i][1], p_vex[i][2], 0, 255, 0)) x.append(p_vex[i][0]) y.append(p_vex[i][1]) z.append(p_vex[i][2]) i = i + 1 # Plot 3d predictions ax = plt.subplot(gs1[subplot_idx - 1], projection='3d') ax.view_init(18, -70) logger.debug(np.min(poses3d)) if np.min(poses3d) < -1000 and frame != 0: poses3d = before_pose p3d = poses3d '''gait_list1 = [] #enter file path below with open('key_joint_info.csv', 'w', newline='') as myfile: gait_list2.append(gait_list1) data1 = pd.DataFrame(gait_list2) wr = csv.writer(myfile, dialect = 'key_joint_info.csv' ) wr.writerow(p3d) wb.save(key_joint_info.csv)''' viz.show3Dpose(p3d, ax, lcolor="#9b59b6", rcolor="#2ecc71") col = 0 for i in p3d[0]: worksheet.write(rows, col, i) col += 1 #.append(i) rows += 1 before_pose = poses3d pngName = '{}_keypoints.png'.format(str(frame)) plt.savefig(pngName) #plt.show() img = cv2.imread(pngName, 0) rect_cpy = img.copy() cv2.imshow('3d-pose-realtime', rect_cpy) done.append(file_name) if key == ord('q'): break except Exception as e: print(e) sess.close()
def main(_): smoothed = read_openpose_json() plt.figure(2) smooth_curves_plot = show_anim_curves(smoothed, plt) #return pngName = 'gif_output/smooth_plot.png' smooth_curves_plot.savefig(pngName) logger.info('writing gif_output/smooth_plot.png') if FLAGS.interpolation: logger.info("start interpolation") framerange = len( smoothed.keys() ) joint_rows = 36 array = np.concatenate(list(smoothed.values())) array_reshaped = np.reshape(array, (framerange, joint_rows) ) multiplier = FLAGS.multiplier multiplier_inv = 1/multiplier out_array = np.array([]) for row in range(joint_rows): x = [] for frame in range(framerange): x.append( array_reshaped[frame, row] ) frame = range( framerange ) frame_resampled = np.arange(0, framerange, multiplier) spl = UnivariateSpline(frame, x, k=3) #relative smooth factor based on jnt anim curve min_x, max_x = min(x), max(x) smooth_fac = max_x - min_x smooth_resamp = 125 smooth_fac = smooth_fac * smooth_resamp spl.set_smoothing_factor( float(smooth_fac) ) xnew = spl(frame_resampled) out_array = np.append(out_array, xnew) logger.info("done interpolating. reshaping {0} frames, please wait!!".format(framerange)) a = np.array([]) for frame in range( int( framerange * multiplier_inv ) ): jnt_array = [] for jnt in range(joint_rows): jnt_array.append( out_array[ jnt * int(framerange * multiplier_inv) + frame] ) a = np.append(a, jnt_array) a = np.reshape(a, (int(framerange * multiplier_inv), joint_rows)) out_array = a interpolate_smoothed = {} for frame in range( int(framerange * multiplier_inv) ): interpolate_smoothed[frame] = list( out_array[frame] ) plt.figure(3) smoothed = interpolate_smoothed interpolate_curves_plot = show_anim_curves(smoothed, plt) pngName = 'gif_output/interpolate_{0}.png'.format(smooth_resamp) interpolate_curves_plot.savefig(pngName) logger.info('writing gif_output/interpolate_plot.png') enc_in = np.zeros((1, 64)) enc_in[0] = [0 for i in range(64)] actions = data_utils.define_actions(FLAGS.action) SUBJECT_IDS = [1, 5, 6, 7, 8, 9, 11] rcams = cameras.load_cameras(FLAGS.cameras_path, SUBJECT_IDS) train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.read_2d_predictions( actions, FLAGS.data_dir) train_set_3d, test_set_3d, data_mean_3d, data_std_3d, dim_to_ignore_3d, dim_to_use_3d, train_root_positions, test_root_positions = data_utils.read_3d_data( actions, FLAGS.data_dir, FLAGS.camera_frame, rcams, FLAGS.predict_14) device_count = {"GPU": 1} png_lib = [] before_pose = None with tf.Session(config=tf.ConfigProto( device_count=device_count, allow_soft_placement=True)) as sess: #plt.figure(3) batch_size = 128 model = create_model(sess, actions, batch_size) iter_range = len(smoothed.keys()) export_units = {} twod_export_units = {} for n, (frame, xy) in enumerate(smoothed.items()): logger.info("calc frame {0}/{1}".format(frame, iter_range)) # map list into np array joints_array = np.zeros((1, 36)) joints_array[0] = [0 for i in range(36)] for o in range(len(joints_array[0])): #feed array with xy array joints_array[0][o] = xy[o] twod_export_units[frame]={} for abs_b, __n in enumerate(range(0, len(xy),2)): twod_export_units[frame][abs_b] = {"translate": [xy[__n],xy[__n+1]]} _data = joints_array[0] # mapping all body parts or 3d-pose-baseline format for i in range(len(order)): for j in range(2): # create encoder input enc_in[0][order[i] * 2 + j] = _data[i * 2 + j] for j in range(2): # Hip enc_in[0][0 * 2 + j] = (enc_in[0][1 * 2 + j] + enc_in[0][6 * 2 + j]) / 2 # Neck/Nose enc_in[0][14 * 2 + j] = (enc_in[0][15 * 2 + j] + enc_in[0][12 * 2 + j]) / 2 # Thorax enc_in[0][13 * 2 + j] = 2 * enc_in[0][12 * 2 + j] - enc_in[0][14 * 2 + j] # set spine spine_x = enc_in[0][24] spine_y = enc_in[0][25] enc_in = enc_in[:, dim_to_use_2d] mu = data_mean_2d[dim_to_use_2d] stddev = data_std_2d[dim_to_use_2d] enc_in = np.divide((enc_in - mu), stddev) dp = 1.0 dec_out = np.zeros((1, 48)) dec_out[0] = [0 for i in range(48)] _, _, poses3d = model.step(sess, enc_in, dec_out, dp, isTraining=False) all_poses_3d = [] enc_in = data_utils.unNormalizeData(enc_in, data_mean_2d, data_std_2d, dim_to_ignore_2d) poses3d = data_utils.unNormalizeData(poses3d, data_mean_3d, data_std_3d, dim_to_ignore_3d) gs1 = gridspec.GridSpec(1, 1) gs1.update(wspace=-0.00, hspace=0.05) # set the spacing between axes. plt.axis('off') all_poses_3d.append( poses3d ) enc_in, poses3d = map( np.vstack, [enc_in, all_poses_3d] ) subplot_idx, exidx = 1, 1 _max = 0 _min = 10000 for i in range(poses3d.shape[0]): for j in range(32): tmp = poses3d[i][j * 3 + 2] poses3d[i][j * 3 + 2] = poses3d[i][j * 3 + 1] poses3d[i][j * 3 + 1] = tmp if poses3d[i][j * 3 + 2] > _max: _max = poses3d[i][j * 3 + 2] if poses3d[i][j * 3 + 2] < _min: _min = poses3d[i][j * 3 + 2] for i in range(poses3d.shape[0]): for j in range(32): poses3d[i][j * 3 + 2] = _max - poses3d[i][j * 3 + 2] + _min poses3d[i][j * 3] += (spine_x - 630) poses3d[i][j * 3 + 2] += (500 - spine_y) # Plot 3d predictions ax = plt.subplot(gs1[subplot_idx - 1], projection='3d') ax.view_init(18, -70) if FLAGS.cache_on_fail: if np.min(poses3d) < -1000: poses3d = before_pose p3d = poses3d to_export = poses3d.tolist()[0] x,y,z = [[] for _ in range(3)] for o in range(0, len(to_export), 3): x.append(to_export[o]) y.append(to_export[o+1]) z.append(to_export[o+2]) export_units[frame]={} for jnt_index, (_x, _y, _z) in enumerate(zip(x,y,z)): export_units[frame][jnt_index] = {"translate": [_x, _y, _z]} viz.show3Dpose(p3d, ax, lcolor="#9b59b6", rcolor="#2ecc71") pngName = 'png/pose_frame_{0}.png'.format(str(frame).zfill(12)) plt.savefig(pngName) if FLAGS.write_gif: png_lib.append(imageio.imread(pngName)) if FLAGS.cache_on_fail: before_pose = poses3d if FLAGS.write_gif: if FLAGS.interpolation: #take every frame on gif_fps * multiplier_inv png_lib = np.array([png_lib[png_image] for png_image in range(0,len(png_lib), int(multiplier_inv)) ]) logger.info("creating Gif gif_output/animation.gif, please Wait!") imageio.mimsave('gif_output/animation.gif', png_lib, fps=FLAGS.gif_fps) _out_file = os.path.join(os.path.dirname(os.path.dirname(__file__)), 'maya/3d_data.json') twod_out_file = os.path.join(os.path.dirname(os.path.dirname(__file__)), 'maya/2d_data.json') with open(_out_file, 'w') as outfile: logger.info("exported maya json to {0}".format(_out_file)) json.dump(export_units, outfile) with open(twod_out_file, 'w') as outfile: logger.info("exported maya json to {0}".format(twod_out_file)) json.dump(twod_export_units, outfile) logger.info("Done!".format(pngName))
def sample(): actions = data_utils.define_actions( FLAGS.action ) SUBJECT_IDS = [1,5,6,7,8,9,11] rcams = load_cameras(FLAGS.cameras_path, SUBJECT_IDS) train_set_3d, test_set_3d, data_mean_3d, data_std_3d, dim_to_ignore_3d, dim_to_use_3d, train_root_positions, test_root_positions = data_utils.read_3d_data( actions, FLAGS.data_dir, FLAGS.camera_frame, rcams, FLAGS.predict_14 ) if FLAGS.use_sh: train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.read_2d_predictions(actions, FLAGS.data_dir) else: train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.create_2d_data( actions, FLAGS.data_dir, rcams ) print( "done reading and normalizing data." ) device_count = {"GPU": 0} if FLAGS.use_cpu else {"GPU": 1} with tf.Session(config=tf.ConfigProto( device_count = device_count )) as sess: print("Creating %d layers of %d units." % (FLAGS.num_layers, FLAGS.linear_size)) batch_size = 128 model = create_model(sess, actions, batch_size) print("Model loaded") for key2d in test_set_2d.keys(): (subj, b, fname) = key2d print( "Subject: {}, action: {}, fname: {}".format(subj, b, fname) ) key3d = key2d if FLAGS.camera_frame else (subj, b, '{0}.h5'.format(fname.split('.')[0])) key3d = (subj, b, fname[:-3]) if (fname.endswith('-sh')) and FLAGS.camera_frame else key3d enc_in = test_set_2d[ key2d ] n2d, _ = enc_in.shape dec_out = test_set_3d[ key3d ] n3d, _ = dec_out.shape assert n2d == n3d enc_in = np.array_split( enc_in, n2d // batch_size ) dec_out = np.array_split( dec_out, n3d // batch_size ) all_poses_3d = [] for bidx in range( len(enc_in) ): dp = 1.0 _, _, poses3d = model.step(sess, enc_in[bidx], dec_out[bidx], dp, isTraining=False) enc_in[bidx] = data_utils.unNormalizeData( enc_in[bidx], data_mean_2d, data_std_2d, dim_to_ignore_2d ) dec_out[bidx] = data_utils.unNormalizeData( dec_out[bidx], data_mean_3d, data_std_3d, dim_to_ignore_3d ) poses3d = data_utils.unNormalizeData( poses3d, data_mean_3d, data_std_3d, dim_to_ignore_3d ) all_poses_3d.append( poses3d ) enc_in, dec_out, poses3d = map( np.vstack, [enc_in, dec_out, all_poses_3d] ) if FLAGS.camera_frame: N_CAMERAS = 4 N_JOINTS_H36M = 32 dec_out = dec_out + np.tile( test_root_positions[ key3d ], [1,N_JOINTS_H36M] ) subj, _, sname = key3d cname = sname.split('.')[1] scams = {(subj,c+1): rcams[(subj,c+1)] for c in range(N_CAMERAS)} scam_idx = [scams[(subj,c+1)][-1] for c in range(N_CAMERAS)].index( cname ) the_cam = scams[(subj, scam_idx+1)] R, T, f, c, k, p, name = the_cam assert name == cname def cam2world_centered(data_3d_camframe): data_3d_worldframe = camera_to_world_frame(data_3d_camframe.reshape((-1, 3)), R, T) data_3d_worldframe = data_3d_worldframe.reshape((-1, N_JOINTS_H36M*3)) return data_3d_worldframe - np.tile( data_3d_worldframe[:,:3], (1,N_JOINTS_H36M) ) dec_out = cam2world_centered(dec_out) poses3d = cam2world_centered(poses3d) enc_in, dec_out, poses3d = map( np.vstack, [enc_in, dec_out, poses3d] ) idx = np.random.permutation( enc_in.shape[0] ) enc_in, dec_out, poses3d = enc_in[idx, :], dec_out[idx, :], poses3d[idx, :] import matplotlib.gridspec as gridspec fig = plt.figure( figsize=(19.2, 10.8) ) gs1 = gridspec.GridSpec(5, 9) gs1.update(wspace=-0.00, hspace=0.05) plt.axis('off') subplot_idx, exidx = 1, 1 nsamples = 15 for i in np.arange( nsamples ): ax1 = plt.subplot(gs1[subplot_idx-1]) p2d = enc_in[exidx,:] viz.show2Dpose( p2d, ax1 ) ax1.invert_yaxis() ax2 = plt.subplot(gs1[subplot_idx], projection='3d') p3d = dec_out[exidx,:] viz.show3Dpose( p3d, ax2 ) ax3 = plt.subplot(gs1[subplot_idx+1], projection='3d') p3d = poses3d[exidx,:] viz.show3Dpose( p3d, ax3, lcolor="#9b59b6", rcolor="#2ecc71" ) exidx = exidx + 1 subplot_idx = subplot_idx + 3 plt.show()
def main(_): actions_all = data_utils.define_actions("All") actions = data_utils.define_actions("Discussion") # Load camera parameters SUBJECT_IDS = [1, 5, 6, 7, 8, 9, 11] rcams = cameras.load_cameras(FLAGS.cameras_path, SUBJECT_IDS) # Load 3d data and load (or create) 2d projections train_set_3d, test_set_3d, data_mean_3d, data_std_3d, dim_to_ignore_3d, dim_to_use_3d, train_root_positions, test_root_positions = data_utils.read_3d_data( actions, FLAGS.data_dir, FLAGS.camera_frame, rcams, FLAGS.predict_14) train_set_3d = data_utils.remove_first_frame(train_set_3d) test_set_3d = data_utils.remove_first_frame(test_set_3d) train_root_positions = data_utils.remove_first_frame(train_root_positions) test_root_positions = data_utils.remove_first_frame(test_root_positions) print("Finished Read 3D Data") # train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.read_2d_predictions(actions_all, FLAGS.data_dir) # train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.transform_to_2d_biframe_prediction(train_set_2d, # test_set_2d, # data_mean_2d, # data_std_2d, # dim_to_ignore_2d, # dim_to_use_2d) train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.create_2d_data( actions_all, FLAGS.data_dir, rcams) train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.transform_to_2d_biframe_prediction( train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d) SH_TO_GT_PERM = np.array( [SH_NAMES.index(h) for h in H36M_NAMES if h != '' and h in SH_NAMES]) assert np.all(SH_TO_GT_PERM == np.array( [6, 2, 1, 0, 3, 4, 5, 7, 8, 9, 13, 14, 15, 12, 11, 10])) test_set = {} manipulation_dir = os.path.dirname(FLAGS.data_dir) manipulation_dir = os.path.dirname(manipulation_dir) manipulation_dir += '/manipulation_video/' manipulation_folders = glob.glob(manipulation_dir + '*') subj = 1 action = 'manipulation-video' for folder in manipulation_folders: seqname = os.path.basename(folder) with h5py.File(folder + '/' + seqname + '.h5', 'r') as h5f: poses = h5f['poses'][:] # Permute the loaded data to make it compatible with H36M poses = poses[:, SH_TO_GT_PERM, :] # Reshape into n x (32*2) matrix poses = np.reshape(poses, [poses.shape[0], -1]) poses_final = np.zeros([poses.shape[0], len(H36M_NAMES) * 2]) dim_to_use_x = np.where( np.array([x != '' and x != 'Neck/Nose' for x in H36M_NAMES]))[0] * 2 dim_to_use_y = dim_to_use_x + 1 dim_to_use = np.zeros(len(SH_NAMES) * 2, dtype=np.int32) dim_to_use[0::2] = dim_to_use_x dim_to_use[1::2] = dim_to_use_y poses_final[:, dim_to_use] = poses print(seqname, poses_final.shape) poses_final[poses_final == 0.] = 0.1 test_set[(subj, action, seqname)] = poses_final test_set = data_utils.uni_frame_to_bi_frame(test_set) test_set_2d = data_utils.normalize_data(test_set, data_mean_2d, data_std_2d, dim_to_use_2d) for key in test_set.keys(): test_set[key] = test_set[key][0::2, :] dim_to_use_12_manipulation_joints = np.array([ 3, 4, 5, 6, 7, 8, 9, 10, 11, 18, 19, 20, 21, 22, 23, 24, 25, 26, 51, 52, 53, 54, 55, 56, 57, 58, 59, 75, 76, 77, 78, 79, 80, 81, 82, 83 ]) print("Finished Normalize Manipualtion Videos") device_count = {"GPU": 0} if FLAGS.use_cpu else {"GPU": 1} with tf.Session(config=tf.ConfigProto(device_count=device_count)) as sess: # === Create the model === print("Creating %d layers of %d units." % (FLAGS.num_layers, FLAGS.linear_size)) batch_size = FLAGS.batch_size #Intial code is 64*2 model = predict_3dpose_biframe.create_model(sess, actions_all, batch_size) print("Model loaded") j = 0 for key2d in test_set_2d.keys(): (subj, b, fname) = key2d # if fname != specific_seqname + '.h5': # continue print("Subject: {}, action: {}, fname: {}".format(subj, b, fname)) enc_in = test_set_2d[key2d] n2d, _ = enc_in.shape # Split into about-same-size batches enc_in = np.array_split(enc_in, n2d // 1) all_poses_3d = [] for bidx in range(len(enc_in)): # Dropout probability 0 (keep probability 1) for sampling dp = 1.0 anything = np.zeros((enc_in[bidx].shape[0], 48)) _, _, poses3d = model.step(sess, enc_in[bidx], anything, dp, isTraining=False) # Denormalize enc_in[bidx] = data_utils.unNormalizeData( enc_in[bidx], data_mean_2d, data_std_2d, dim_to_ignore_2d) poses3d = data_utils.unNormalizeData(poses3d, data_mean_3d, data_std_3d, dim_to_ignore_3d) all_poses_3d.append(poses3d) # Put all the poses together enc_in, poses3d = map(np.vstack, [enc_in, all_poses_3d]) enc_in, poses3d = map(np.vstack, [enc_in, poses3d]) poses3d_12_manipulation = poses3d[:, dim_to_use_12_manipulation_joints] annotated_images = glob.glob(manipulation_dir + fname + '/info/*.xml') annotated_images = sorted(annotated_images) # 1080p = 1,920 x 1,080 fig = plt.figure(j, figsize=(10, 10)) gs1 = gridspec.GridSpec(3, 3) gs1.update(wspace=-0, hspace=0.1) # set the spacing between axes. plt.axis('off') subplot_idx = 1 nsamples = 3 for i in np.arange(nsamples): # Plot 2d Detection ax1 = plt.subplot(gs1[subplot_idx - 1]) img = mpimg.imread( manipulation_dir + fname + '/skeleton_cropped/' + os.path.basename(annotated_images[i]).split('_')[0] + '.jpg') ax1.imshow(img) # Plot 2d pose ax2 = plt.subplot(gs1[subplot_idx]) # p2d = enc_in[i,:] # viz.show2Dpose( p2d, ax2 ) # ax2.invert_yaxis() ax2.imshow(img) # Plot 3d predictions # Compute first the procrustion and print error gt = getJ3dPosFromXML(annotated_images[i]) A = poses3d_12_manipulation[i, :].reshape(gt.shape) _, Z, T, b, c = procrustes.compute_similarity_transform( gt, A, compute_optimal_scale=True) sqerr = np.sqrt(np.sum((gt - (b * A.dot(T)) - c)**2, axis=1)) print("{0} - {1} - Mean Error (mm) : {2}".format( fname, os.path.basename(annotated_images[i]), np.mean(sqerr))) ax3 = plt.subplot(gs1[subplot_idx + 1], projection='3d') temp = poses3d[i, :].reshape((32, 3)) temp = c + temp.dot(T) #Do not scale # p3d = temp.reshape((1, 96)) p3d = poses3d[i, :] viz.show3Dpose(p3d, ax3, lcolor="#9b59b6", rcolor="#2ecc71") ax3.invert_zaxis() ax3.invert_yaxis() subplot_idx = subplot_idx + 3 plt.show() j += 1
def main(_): done = [] enc_in = np.zeros((1, 64)) enc_in[0] = [0 for i in range(64)] actions = data_utils.define_actions(FLAGS.action) SUBJECT_IDS = [1, 5, 6, 7, 8, 9, 11] rcams = cameras.load_cameras(FLAGS.cameras_path, SUBJECT_IDS) train_set_2d, test_set_2d, data_mean_2d, data_std_2d, dim_to_ignore_2d, dim_to_use_2d = data_utils.read_2d_predictions( actions, FLAGS.data_dir) train_set_3d, test_set_3d, data_mean_3d, data_std_3d, dim_to_ignore_3d, dim_to_use_3d, train_root_positions, test_root_positions = data_utils.read_3d_data( actions, FLAGS.data_dir, FLAGS.camera_frame, rcams, FLAGS.predict_14) device_count = {"GPU": 0} png_lib = [] with tf.Session(config=tf.ConfigProto(device_count=device_count, allow_soft_placement=True)) as sess: #plt.figure(3) batch_size = 128 model = create_model(sess, actions, batch_size) while True: key = cv2.waitKey(1) & 0xFF #logger.info("start reading data") # check for other file types list_of_files = glob.iglob("{0}/*".format( openpose_output_dir)) # You may use iglob in Python3 latest_file = "" try: latest_file = max(list_of_files, key=os.path.getctime) except ValueError: #empthy dir pass if not latest_file: continue try: _file = file_name = latest_file print(latest_file) if not os.path.isfile(_file): raise Exception("No file found!!, {0}".format(_file)) data = json.load(open(_file)) #take first person _data = data["people"][0]["pose_keypoints"] xy = [] #ignore confidence score for o in range(0, len(_data), 3): xy.append(_data[o]) xy.append(_data[o + 1]) frame_indx = re.findall("(\d+)", file_name) frame = int(frame_indx[0]) joints_array = np.zeros((1, 36)) joints_array[0] = [0 for i in range(36)] for o in range(len(joints_array[0])): #feed array with xy array joints_array[0][o] = xy[o] _data = joints_array[0] # mapping all body parts or 3d-pose-baseline format for i in range(len(order)): for j in range(2): # create encoder input enc_in[0][order[i] * 2 + j] = _data[i * 2 + j] for j in range(2): # Hip enc_in[0][0 * 2 + j] = (enc_in[0][1 * 2 + j] + enc_in[0][6 * 2 + j]) / 2 # Neck/Nose enc_in[0][14 * 2 + j] = (enc_in[0][15 * 2 + j] + enc_in[0][12 * 2 + j]) / 2 # Thorax enc_in[0][ 13 * 2 + j] = 2 * enc_in[0][12 * 2 + j] - enc_in[0][14 * 2 + j] # set spine spine_x = enc_in[0][24] spine_y = enc_in[0][25] enc_in = enc_in[:, dim_to_use_2d] mu = data_mean_2d[dim_to_use_2d] stddev = data_std_2d[dim_to_use_2d] enc_in = np.divide((enc_in - mu), stddev) dp = 1.0 dec_out = np.zeros((1, 48)) dec_out[0] = [0 for i in range(48)] _, _, poses3d = model.step(sess, enc_in, dec_out, dp, isTraining=False) all_poses_3d = [] enc_in = data_utils.unNormalizeData(enc_in, data_mean_2d, data_std_2d, dim_to_ignore_2d) poses3d = data_utils.unNormalizeData(poses3d, data_mean_3d, data_std_3d, dim_to_ignore_3d) gs1 = gridspec.GridSpec(1, 1) gs1.update(wspace=-0.00, hspace=0.05) # set the spacing between axes. plt.axis('off') all_poses_3d.append(poses3d) enc_in, poses3d = map(np.vstack, [enc_in, all_poses_3d]) subplot_idx, exidx = 1, 1 _max = 0 _min = 10000 for i in range(poses3d.shape[0]): for j in range(32): tmp = poses3d[i][j * 3 + 2] poses3d[i][j * 3 + 2] = poses3d[i][j * 3 + 1] poses3d[i][j * 3 + 1] = tmp if poses3d[i][j * 3 + 2] > _max: _max = poses3d[i][j * 3 + 2] if poses3d[i][j * 3 + 2] < _min: _min = poses3d[i][j * 3 + 2] for i in range(poses3d.shape[0]): for j in range(32): poses3d[i][j * 3 + 2] = _max - poses3d[i][j * 3 + 2] + _min poses3d[i][j * 3] += (spine_x - 630) poses3d[i][j * 3 + 2] += (500 - spine_y) # Plot 3d predictions ax = plt.subplot(gs1[subplot_idx - 1], projection='3d') ax.view_init(18, -70) logger.debug(np.min(poses3d)) if np.min(poses3d) < -1000 and frame != 0: poses3d = before_pose p3d = poses3d viz.show3Dpose(p3d, ax, lcolor="#9b59b6", rcolor="#2ecc71") before_pose = poses3d pngName = 'png/test_{0}.png'.format(str(frame)) plt.savefig(pngName) #plt.show() img = cv2.imread(pngName, 0) rect_cpy = img.copy() cv2.imshow('3d-pose-baseline', rect_cpy) done.append(file_name) if key == ord('q'): break except Exception as e: print(e) sess.close()
print(dec_out, 'dec_out') # Visualize random samples import matplotlib.gridspec as gridspec # 1080p = 1,920 x 1,080 fig = plt.figure(figsize=(19.2, 10.8)) #先画出图框大小 gs1 = gridspec.GridSpec(1, 2) # 5 rows, 9 columns gs1.update(wspace=0.05, hspace=0.05) # set the spacing between axes. plt.axis('off') subplot_idx, exidx = 1, 1 nsamples = 1 for i in np.arange(nsamples): # Plot 2d pose ax1 = plt.subplot(gs1[subplot_idx - 1]) p2d = enc_final[exidx - 1, :] viz.show2Dpose(p2d, ax1) ax1.invert_yaxis() # Plot 3d gt ax2 = plt.subplot(gs1[subplot_idx], projection='3d') p3d = dec_final[exidx - 1, :] viz.show3Dpose(p3d, ax2) exidx = exidx + 1 subplot_idx = subplot_idx + 3 plt.show()