コード例 #1
0
def validate(val_loader, model, epoch):
    batch_time = AverageMeter()
    losses = AverageMeter()
    top1 = AverageMeter()
    top5 = AverageMeter()
    # switch to evaluate mode
    model.eval()

    with torch.no_grad():
        end = time.time()
        for i, (data, target) in enumerate(val_loader):

            target = target.cuda(non_blocking=True)
            data = data.cuda()
            # compute output
            output = model(data)
            loss = criterion(output, target)

            # measure accuracy and record loss
            acc1, acc5 = accuracy(output, target, topk=(1, 5))
            losses.update(loss.item(), data.size(0))
            top1.update(acc1.item(), data.size(0))
            top5.update(acc5.item(), data.size(0))
            # measure elapsed time
            batch_time.update(time.time() - end)
            end = time.time()
            if i % args.print_freq == 0:
                logger.info(
                    'Test: [{0}/{1}]\t'
                    'Test Loss {loss.val:.3f} (avg={loss.avg:.3f})\t'
                    'Prec@1 {top1.val:.3f} (avg={top1.avg:.3f})\t'
                    'Prec@5 {top5.val:.3f} (avg={top5.avg:.3f})'.format(
                        i, len(val_loader), loss=losses, top1=top1, top5=top5))

        logger.info(' * Prec@1 {top1.avg:.5f} Prec@5 {top5.avg:.5f}'.format(
            top1=top1, top5=top5))
    return top1.avg, top5.avg
コード例 #2
0
def train(train_loader, model, optimizer, epoch):
    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()
    top1 = AverageMeter()
    top5 = AverageMeter()

    # switch to train mode
    model.train()

    end = time.time()
    for i, (data, target) in enumerate(train_loader):
        # measure data loading time
        data_time.update(time.time() - end)
        target = target.cuda(non_blocking=True)
        data = data.cuda()

        output = model(data)
        loss = criterion(output, target)

        acc1, acc5 = accuracy(output, target, topk=(1, 5))
        losses.update(loss.item(), data.size(0))
        top1.update(acc1.item(), data.size(0))
        top5.update(acc5.item(), data.size(0))

        # compute gradient and do SGD step
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()
        lr = optimizer.param_groups[0]["lr"]

        if i % 20 == 0:
            logger.info(
                'Epoch[{0}/{1}] Iter[{2}/{3}]\t'
                'Batch Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                'Data Time {data_time.val:.3f} ({data_time.avg:.3f})\t'
                'Train Loss {loss.val:.3f} ({loss.avg:.3f})\t'
                'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
                'Prec@5 {top5.val:.3f} ({top5.avg:.3f})\t'
                'LR: {lr:.4f}'.format(epoch,
                                      args.epochs,
                                      i,
                                      len(train_loader),
                                      batch_time=batch_time,
                                      data_time=data_time,
                                      loss=losses,
                                      top1=top1,
                                      top5=top5,
                                      lr=lr))

    return losses.avg
コード例 #3
0
def train(train_loader, model, optimizer, lr_scheduler, epoch):
    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()
    top1 = AverageMeter()
    top5 = AverageMeter()

    if args.use_dali:
        train_loader_len = int(np.ceil(train_loader._size/args.batch_size))
    else:
        train_loader_len = len(train_loader)

    # switch to train mode
    model.train()

    end = time.time()
    for i, data in enumerate(train_loader):
        # measure data loading time
        data_time.update(time.time() - end)

        if args.use_dali:
            target = torch.cat([i["label"].to(torch.device('cuda:0')) for i in data], dim=0)
            data = torch.cat([i["data"].to(torch.device('cuda:0')) for i in data], dim=0)
            target = target.cuda().squeeze().long()
        else:
            data, target = data
            data = data.cuda()
            target = target.cuda()

        output = model(data)
        loss = criterion(output, target)

        acc1, acc5 = accuracy(output, target, topk=(1, 5))
        losses.update(loss.item(), data.size(0))
        top1.update(acc1.item(), data.size(0))
        top5.update(acc5.item(), data.size(0))

        # compute gradient and do SGD step
        optimizer.zero_grad()
        loss.backward()

        lr = lr_scheduler.step()
        for pg in optimizer.param_groups:
            pg["lr"] = lr

        # impose L1 penalty to BN factors
        if args.sparsity != 0:
            for m in model.modules():
                if isinstance(m, nn.BatchNorm2d):
                    m.weight.grad.data.add_(args.sparsity*torch.sign(m.weight.data))  # L1

        optimizer.step()

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        lr = optimizer.param_groups[0]["lr"]

        if i % args.print_freq == 0:
            logger.info('Epoch[{0}/{1}] Iter[{2}/{3}]\t'
                  'Batch Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                  'Data Time {data_time.val:.3f} ({data_time.avg:.3f})\t'
                  'Train Loss {loss.val:.3f} ({loss.avg:.3f})\t'
                  'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
                  'Prec@5 {top5.val:.3f} ({top5.avg:.3f})\t'
                  'LR: {lr:.4f}'.format(
                   epoch, args.epochs, i, train_loader_len,
                   batch_time=batch_time, data_time=data_time, loss=losses, top1=top1, top5=top5,
                   lr=lr))

    if args.use_dali:
        train_loader.reset()

    return losses.avg
コード例 #4
0
def validate(val_loader, model, epoch):
    batch_time = AverageMeter()
    losses = AverageMeter()
    top1 = AverageMeter()
    top5 = AverageMeter()

    if args.use_dali:
        val_loader_len = int(val_loader._size / 100)
    else:
        val_loader_len = len(val_loader)

    # switch to evaluate mode
    model.eval()

    with torch.no_grad():
        end = time.time()
        for i, data in enumerate(val_loader):
            
            if args.use_dali:
                target = torch.cat([i["label"].to(torch.device('cuda:0')) for i in data], dim=0)
                data = torch.cat([i["data"].to(torch.device('cuda:0')) for i in data], dim=0)
                target = target.cuda(non_blocking=True).squeeze().long()
            else:
                data, target = data
                data = data.cuda()
                target = target.cuda(non_blocking=True)

            data = data.cuda()
            # compute output
            output = model(data)
            loss = criterion(output, target)
            
            # measure accuracy and record loss
            acc1, acc5 = accuracy(output, target, topk=(1, 5))
            losses.update(loss.item(), data.size(0))
            top1.update(acc1.item(), data.size(0))
            top5.update(acc5.item(), data.size(0))
            # measure elapsed time
            batch_time.update(time.time() - end)
            end = time.time()
            if i % args.print_freq == 0:
                logger.info('Test: [{0}/{1}]\t'
                      'Test Loss {loss.val:.3f} (avg={loss.avg:.3f})\t'
                      'Prec@1 {top1.val:.3f} (avg={top1.avg:.3f})\t'
                      'Prec@5 {top5.val:.3f} (avg={top5.avg:.3f})'.format(
                       i, val_loader_len, loss=losses, top1=top1, top5=top5))

        logger.info(' * Prec@1 {top1.avg:.5f} Prec@5 {top5.avg:.5f}'
              .format(top1=top1, top5=top5))

    if args.use_dali:
        val_loader.reset()

    return top1.avg, top5.avg
コード例 #5
0
def train(train_loader, model, optimizer, lr_scheduler, epoch):
    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()
    top1 = AverageMeter()
    top5 = AverageMeter()

    # switch to train mode
    model.train()

    end = time.time()
    for i, (data, target) in enumerate(train_loader):
        # measure data loading time
        data_time.update(time.time() - end)
        target = target.cuda(non_blocking=True)
        data = data.cuda()

        output = model(data)
        loss = criterion(output, target)

        acc1, acc5 = accuracy(output, target, topk=(1, 5))
        losses.update(loss.item(), data.size(0))
        top1.update(acc1.item(), data.size(0))
        top5.update(acc5.item(), data.size(0))

        # compute gradient and do SGD step
        optimizer.zero_grad()
        loss.backward()

        # adjust lr
        lr = lr_scheduler.step()
        for pg in optimizer.param_groups:
            pg["lr"] = lr

        # impose L1 penalty to BN factors
        if args.sparsity != 0:
            for m in model.modules():
                if isinstance(m, nn.BatchNorm2d):
                    m.weight.grad.data.add_(args.sparsity*torch.sign(m.weight.data))  # L1

        optimizer.step()

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()
        lr = optimizer.param_groups[0]["lr"]

        if i % args.print_freq == 0:
            logger.info('Epoch[{0}/{1}] Iter[{2}/{3}]\t'
                  'Batch Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                  'Data Time {data_time.val:.3f} ({data_time.avg:.3f})\t'
                  'Train Loss {loss.val:.3f} ({loss.avg:.3f})\t'
                  'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
                  'Prec@5 {top5.val:.3f} ({top5.avg:.3f})\t'
                  'LR: {lr:.4f}'.format(
                   epoch, args.epochs, i, len(train_loader),
                   batch_time=batch_time, data_time=data_time, loss=losses, top1=top1, top5=top5,
                   lr=lr))

    return losses.avg