def score(query, profile, data=None): if not len(profile.description): return [-1] vectorspace = VectorSpace([]) tokenized_description = LowerTokenizer.tokenize(profile.description) description_vector = vectorspace.vector_for_document( tokenized_document=tokenized_description, update=True) ddg_description = DuckDuckDescription.query(query.lower()) ddg_vector = [] if ddg_description: ddg_text = ddg_description['description']['text'] ddg_tokenized = LowerTokenizer.tokenize(ddg_text) ddg_vector = vectorspace.vector_for_document( tokenized_document=ddg_tokenized, update=True) if not len(ddg_vector): return [-1] return [cossim(description_vector, ddg_vector)]
def score(query, profile, data=None): if not len(profile.description): return [-1] vectorspace = VectorSpace([]) tokenized_query = LowerTokenizer.tokenize(query) tokenized_description = LowerTokenizer.tokenize(profile.description) query_vector = vectorspace.vector_for_document( tokenized_document=tokenized_query, update=True) description_vector = vectorspace.vector_for_document( tokenized_document=tokenized_description, update=True) return [cossim(description_vector, query_vector)]